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Foreword

Clustering is one of the most fundamental and essential data analysis tasks
with broad applications. It can be used as an independent data mining task
to disclose intrinsic characteristics of data, or as a preprocessing step with
the clustering results used further in other data mining tasks, such as clas-
sification, prediction, correlation analysis, and anomaly detection. It is no
wonder that clustering has been studied extensively in various research fields,
including data mining, machine learning, pattern recognition, and scientific,
engineering, social, economic, and biomedical data analysis. Although there
have been numerous studies on clustering methods and their applications,
due to the wide spectrum that the theme covers and the diversity of the
methodology research publications on this theme have been scattered in var-
ious conference proceedings or journals in multiple research fields. There is a
need for a good collection of books dedicated to this theme, especially con-
sidering the surge of research activities on cluster analysis in the last several
years.

This book fills such a gap and meets the demand of many researchers
and practitioners who would like to have a solid grasp of the state of the art
on cluster analysis methods and their applications. The book consists of a
collection of chapters, contributed by a group of authoritative researchers in
the field. It covers a broad spectrum of the field, from comprehensive surveys
to in-depth treatments of a few important topics. The book is organized in a
systematic manner, treating different themes in a balanced way. It is worth
reading and further when taken as a good reference book on your shelf.

The chapter “A Survey of Clustering Data Mining Techniques” by Pavel
Berkhin provides an overview of the state-of-the-art clustering techniques. It
presents a comprehensive classification of clustering methods, covering hier-
archical methods, partitioning relocation methods, density-based partitioning
methods, grid-based methods, methods based on co-occurrence of categorical
data, and other clustering techniques, such as constraint-based and graph-
partitioning methods. Moreover, it introduces scalable clustering algorithms
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and clustering algorithms for high-dimensional data. Such a coverage provides
a well-organized picture of the whole research field.

In the chapter “Similarity-Based Text Clustering: A Comparative Study,”
Joydeep Ghosh and Alexander Strehl perform the first comparative study
among popular similarity measures (Euclidean, cosine, Pearson correlation,
extended Jaccard) in conjunction with several clustering techniques (random,
self-organizing feature map, hypergraph partitioning, generalized k-means,
weighted graph partitioning) on a variety of high-dimensional sparse vector
data sets representing text documents as bags of words. The comparative
performance results are interesting and instructive.

In the chapter “Criterion Functions for Clustering on High-Dimensional
Data”, Ying Zhao and George Karypis provide empirical and theoretical com-
parisons of the performance of a number of widely used criterion functions in
the context of partitional clustering algorithms for high-dimensional datasets.
This study presents empirical and theoretical guidance on the selection of cri-
terion functions for clustering high-dimensional data, such as text documents.

Other chapters also provide interesting introduction and in-depth treat-
ments of various topics of clustering, including a star-clustering algorithm by
Javed Aslam, Ekaterina Pelekhov, and Daniela Rus, a study on clustering
large datasets with principal direction divisive partitioning by David Littau
and Daniel Boley, a method for clustering with entropy-like k-means algo-
rithms by Marc Teboulle, Pavel Berkhin, Inderjit Dhillon, Yuqiang Guan,
and Jacob Kogan, two new sampling methods for building initial partitions
for effective clustering by Zeev Volkovich, Jacob Kogan, and Charles Nicholas,
and “tmg: A MATLAB Toolbox for Generating Term-Document Matrices
from Text Collections” by Dimitrios Zeimpekis and Efstratios Gallopoulos.
These chapters present in-depth treatment of several popularly studied meth-
ods and widely used tools for effective and efficient cluster analysis.

Finally, the book provides a comprehensive bibliography, which is a mar-
velous and up-to-date list of research papers on cluster analysis. It serves as
a valuable resource for researchers.

I enjoyed reading the book. I hope you will also find it a valuable source for
learning the concepts and techniques of cluster analysis and a handy reference
for in-depth and productive research on these topics.

University of Illinois at Jiawei Han
Urbana-Champaign
June 29, 2005



Preface

Clustering is a fundamental problem that has numerous applications in many
disciplines. Clustering techniques are used to discover natural groups in
datasets and to identify abstract structures that might reside there, with-
out having any background knowledge of the characteristics of the data. They
have been used in various areas including bioinformatics, computer vision,
data mining, gene expression analysis, text mining, VLSI design, and Web
page clustering to name just a few. Numerous recent contributions to this
research area are scattered in a variety of publications in multiple research
fields.

This volume collects contributions of computers scientists, data miners,
applied mathematicians, and statisticians from academia and industry. It
covers a number of important topics and provides about 500 references
relevant to current clustering research (we plan to make this reference list
available on the Web). We hope the volume will be useful for anyone willing
to learn about or contribute to clustering research.

The editors would like to express gratitude to the authors for making
their research available for the volume. Without these individuals’ help and
cooperation this book would not be possible. Thanks also go to Ralf Gerstner
of Springer for his patience and assistance, and for the timely production of
this book. We would like to acknowledge the support of the United States–
Israel Binational Science Foundation through the grant BSF No. 2002-010,
and the support of the Fulbright Program.

Karmiel, Israel and Baltimore, USA, Jacob Kogan
Baltimore, USA, Charles Nicholas
Tel Aviv, Israel, Marc Teboulle
July 2005
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The Star Clustering Algorithm
for Information Organization

J.A. Aslam, E. Pelekhov, and D. Rus

Summary. We present the star clustering algorithm for static and dynamic infor-
mation organization. The offline star algorithm can be used for clustering static in-
formation systems, and the online star algorithm can be used for clustering dynamic
information systems. These algorithms organize a data collection into a number of
clusters that are naturally induced by the collection via a computationally efficient
cover by dense subgraphs. We further show a lower bound on the accuracy of the
clusters produced by these algorithms as well as demonstrate that these algorithms
are computationally efficient. Finally, we discuss a number of applications of the
star clustering algorithm and provide results from a number of experiments with
the Text Retrieval Conference data.

1 Introduction

We consider the problem of automatic information organization and present
the star clustering algorithm for static and dynamic information organization.
Offline information organization algorithms are useful for organizing static col-
lections of data, for example, large-scale legacy collections. Online information
organization algorithms are useful for keeping dynamic corpora, such as news
feeds, organized. Information retrieval (IR) systems such as Inquery [427],
Smart [378], and Google provide automation by computing ranked lists of
documents sorted by relevance; however, it is often ineffective for users to
scan through lists of hundreds of document titles in search of an information
need. Clustering algorithms are often used as a preprocessing step to organize
data for browsing or as a postprocessing step to help alleviate the “information
overload” that many modern IR systems engender.

There has been extensive research on clustering and its applications
to many domains [17, 231]. For a good overview see [242]. For a good
overview of using clustering in IR see [455]. The use of clustering in IR was
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mostly driven by the cluster hypothesis [429], which states that “closely asso-
ciated documents tend to be related to the same requests.” Jardine and van
Rijsbergen [246] show some evidence that search results could be improved
by clustering. Hearst and Pedersen [225] re-examine the cluster hypothesis by
focusing on the Scatter/Gather system [121] and conclude that it holds for
browsing tasks.

Systems like Scatter/Gather [121] provide a mechanism for user-driven
organization of data in a fixed number of clusters but the users need to be in
the loop and the computed clusters do not have accuracy guarantees. Scat-
ter/Gather uses fractionation to compute nearest-neighbor clusters. Charika
et al. [104] consider a dynamic clustering algorithm to partition a collection of
text documents into a fixed number of clusters. Since in dynamic information
systems the number of topics is not known a priori, a fixed number of clusters
cannot generate a natural partition of the information.

In this chapter, we provide an overview of our work on clustering algo-
rithms and their applications [26–33]. We propose an offline algorithm for
clustering static information and an online version of this algorithm for clus-
tering dynamic information. These two algorithms compute clusters induced
by the natural topic structure of the information space. Thus, this work is
different from [104,121] in that we do not impose the constraint to use a fixed
number of clusters. As a result, we can guarantee a lower bound on the topic
similarity between the documents in each cluster. The model for topic sim-
ilarity is the standard vector space model used in the IR community [377],
which is explained in more detail in Sect. 2 of this chapter.

While the clustering document represented in the vector space model is our
primary motivating example, our algorithms can be applied to clustering any
set of objects for which a similarity measure is defined, and the performance
results stated largely apply whenever the objects themselves are represented
in a feature space in which similarity is defined by the cosine metric.

To compute accurate clusters, we formalize clustering as covering graphs
by cliques [256] (where the cover is a vertex cover). Covering by cliques is NP
complete and thus intractable for large document collections. Unfortunately,
it has also been shown that the problem cannot be approximated even in
polynomial time [322, 465]. We instead use a cover by dense subgraphs that
are star shaped and that can be computed offline for static data and online for
dynamic data. We show that the offline and the online algorithms produce cor-
rect clusters efficiently. Asymptotically, the running time of both algorithms
is roughly linear in the size of the similarity graph that defines the informa-
tion space (explained in detail in Sect. 2). We also show lower bounds on the
topic similarity within the computed clusters (a measure of the accuracy of
our clustering algorithm) as well as provide experimental data.

We further compare the performance of the star algorithm to two widely
used algorithms for clustering in IR and other settings: the single link
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method1 [118] and the average link algorithm2 [434]. Neither algorithm pro-
vides guarantees for the topic similarity within a cluster. The single link al-
gorithm can be used in offline and online modes, and it is faster than the
average link algorithm, but it produces poorer clusters than the average link
algorithm. The average link algorithm can only be used offline to process sta-
tic data. The star clustering algorithm, on the other hand, computes topic
clusters that are naturally induced by the collection, provides guarantees on
cluster quality, computes more accurate clusters than either the single link or
the average link methods, is efficient, admits an efficient and simple online ver-
sion, and can perform hierarchical data organization. We describe experiments
in this chapter with the TREC3 collection demonstrating these abilities.

Finally, we discuss the use of the star clustering algorithm in a number
of different application areas including (1) automatic information organiza-
tion systems, (2) scalable information organization for large corpora, (3) text
filtering, and (4) persistent queries.

2 Motivation for the Star Clustering Algorithm

In this section we describe our clustering model and provide motivation for
the star clustering algorithm. We begin by describing the vector space model
for document representation and consider an idealized clustering algorithm
based on clique covers. Given that clique cover algorithms are computationally
infeasible, we redundant propose an algorithm based on star covers. Finally, we
argue that star covers retain many of the desired properties of clique covers
in expectation, and we demonstrate in subsequent sections that clusterings
based on star covers can be computed very efficiently both online and offline.

2.1 Clique Covers in the Vector Space Model

We formulate our problem by representing a document collection by its
similarity graph. A similarity graph is an undirected, weighted graph G =
(V,E,w), where the vertices in the graph correspond to documents and each
weighted edge in the graph corresponds to a measure of similarity between
two documents. We measure the similarity between two documents by using
a standard metric from the IR community – the cosine metric in the vector
space model of the Smart IR system [377,378].

1In the single link clustering algorithm a document is part of a cluster if it is “related”
to at least one document in the cluster

2In the average link clustering algorithm a document is part of a cluster if it is
“related” to an average number of documents in the cluster

3TREC is the Annual Text Retrieval Conference. Each participant is given of the
order of 5 GB of data and a standard set of queries to test the systems. The results
and the system descriptions are presented as papers at the TREC
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The vector space model for textual information aggregates statistics on
the occurrence of words in documents. The premise of the vector space model
is that two documents are similar if they use similar words. A vector space
can be created for a collection (or corpus) of documents by associating each
important word in the corpus with one dimension in the space. The result
is a high-dimensional vector space. Documents are mapped to vectors in this
space according to their word frequencies. Similar documents map to nearby
vectors. In the vector space model, document similarity is measured by the
angle between the corresponding document vectors. The standard in the IR
community is to map the angles to the interval [0, 1] by taking the cosine of
the vector angles.

G is a complete graph with edges of varying weight. An organization of
the graph that produces reliable clusters of similarity σ (i.e., clusters where
documents have pairwise similarities of at least σ) can be obtained by (1)
thresholding the graph at σ and (2) performing a minimum clique cover with
maximal cliques on the resulting graph Gσ. The thresholded graph Gσ is an
undirected graph obtained from G by eliminating all the edges whose weights
are lower than σ. The minimum clique cover has two features. First, by using
cliques to cover the similarity graph, we are guaranteed that all the documents
in a cluster have the desired degree of similarity. Second, minimal clique covers
with maximal cliques allow vertices to belong to several clusters. In many
information retrieval applications, this is a desirable feature as documents
can have multiple subthemes.

Unfortunately, this approach is computationally intractable. For real cor-
pora, similarity graphs can be very large. The clique cover problem is NP-
complete, and it does not admit polynomial-time approximation algorithms
[322, 465]. While we cannot perform a clique cover or even approximate such
a cover, we can instead cover our graph by dense subgraphs. What we lose in
intracluster similarity guarantees, we gain in computational efficiency.

2.2 Star Covers

We approximate a clique cover by covering the associated thresholded similar-
ity graph with star-shaped subgraphs. A star-shaped subgraph on m+1 vertices
consists of a single star center and m satellite vertices, where there exist edges
between the star center and each of the satellite vertices (see Fig. 1). While
finding cliques in the thresholded similarity graph Gσ guarantees a pairwise
similarity between documents of at least σ, it would appear at first glance that
finding star-shaped subgraphs in Gσ would provide similarity guarantees be-
tween the star center and each of the satellite vertices, but no such similarity
guarantees between satellite vertices. However, by investigating the geometry
of our problem in the vector space model, we can derive a lower bound on
the similarity between satellite vertices as well as provide a formula for the
expected similarity between satellite vertices. The latter formula predicts that
the pairwise similarity between satellite vertices in a star-shaped subgraph is
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s1

s2

s3
s4

s7

s6

s5 C

Fig. 1. An example of a star-shaped subgraph with a center vertex C and satellite
vertices s1–s7. The edges are denoted by solid and dashed lines. Note that there is
an edge between each satellite and a center, and that edges may also exist between
satellite vertices

high, and together with empirical evidence supporting this formula, we con-
clude that covering Gσ with star-shaped subgraphs is an accurate method for
clustering a set of documents.

Consider three documents C, s1, and s2 that are vertices in a star-shaped
subgraph of Gσ, where s1 and s2 are satellite vertices and C is the star center.
By the definition of a star-shaped subgraph of Gσ, we must have that the
similarity between C and s1 is at least σ and that the similarity between C
and s2 is also at least σ. In the vector space model, these similarities are
obtained by taking the cosine of the angle between the vectors associated
with each document. Let α1 be the angle between C and s1, and let α2 be
the angle between C and s2. We then have that cosα1 ≥ σ and cos α2 ≥ σ.
Note that the angle between s1 and s2 can be at most α1 + α2; we therefore
have the following lower bound on the similarity between satellite vertices in
a star-shaped subgraph of Gσ.

Theorem 1. Let Gσ be a similarity graph and let s1 and s2 be two satellites
in the same star in Gσ. Then the similarity between s1 and s2 must be at least

cos(α1 + α2) = cos α1 cos α2 − sin α1 sin α2.

The use of Theorem 1 to bound the similarity between satellite vertices can
yield somewhat disappointing results. For example, if σ = 0.7, cos α1 = 0.75,
and cos α2 = 0.85, we can conclude that the similarity between the two satel-
lite vertices must be at least4:

0.75 × 0.85 −
√

1 − (0.75)2
√

1 − (0.85)2 ≈ 0.29.

4Note that sin θ =
√

1 − cos2 θ
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Note that while this may not seem very encouraging, the analysis is based
on absolute worst-case assumptions, and in practice, the similarities between
satellite vertices are much higher. We can instead reason about the expected
similarity between two satellite vertices by considering the geometric con-
straints imposed by the vector space model as follows.

Theorem 2. Let C be a star center, and let S1 and S2 be the satellite vertices
of C. Then the similarity between S1 and S2 is given by

cos α1 cos α2 + cos θ sin α1 sin α2,

where θ is the dihedral angle5 between the planes formed by S1C and S2C.

This theorem is a fairly direct consequence of the geometry of C, S1, and
S2 in the vector space; details may be found in [31].

How might we eliminate the dependence on cos θ in this formula? Consider
three vertices from a cluster of similarity σ. Randomly chosen, the pairwise
similarities among these vertices should be cos ω for some ω satisfying cos ω ≥
σ. We then have

cos ω = cos ω cos ω + cos θ sin ω sin ω

from which it follows that

cos θ =
cos ω − cos2 ω

sin2 ω
=

cos ω(1 − cos ω)
1 − cos2 ω

=
cos ω

1 + cos ω
.

Substituting for cos θ and noting that cosω ≥ σ, we obtain

cos γ ≥ cos α1 cos α2 +
σ

1 + σ
sin α1 sin α2. (1)

Equation (1) provides an accurate estimate of the similarity between two satel-
lite vertices, as we demonstrate empirically.

Note that for the example given in Sect. 2.2, (1) would predict a similarity
between satellite vertices of approximately 0.78. We have tested this formula
against real data, and the results of the test with the TREC FBIS data set6

are shown in Fig. 2. In this plot, the x-axis and y-axis are similarities between
cluster centers and satellite vertices, and the z-axis is the root mean squared
prediction error (RMS) of the formula in Theorem 2 for the similarity between
satellite vertices. We observe the maximum root mean squared error is quite
small (approximately 0.16 in the worst case), and for reasonably high similar-
ities, the error is negligible. From our tests with real data, we have concluded
that (1) is quite accurate. We may further conclude that star-shaped sub-
graphs are reasonably “dense” in the sense that they imply relatively high
pairwise similarities between all documents in the star.

5The dihedral angle is the angle between two planes on a third plane normal to the
intersection of the two planes

6Foreign Broadcast Information Service (FBIS) is a large collection of text docu-
ments used in TREC
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Fig. 2. The RMS prediction error of our expected satellite similarity formula over
the TREC FBIS collection containing 21,694 documents

3 The Offline Star Clustering Algorithm

Motivated by the discussion of Sect. 2, we now present the star algorithm,
which can be used to organize documents in an information system. The
star algorithm is based on a greedy cover of the thresholded similarity
graph by star-shaped subgraphs; the algorithm itself is summarized in Fig. 3
below.

Theorem 3. The running time of the offline star algorithm on a similarity
graph Gσ is Θ(V + Eσ).

For any threshold σ:

1. Let Gσ = (V, Eσ) where Eσ = {e ∈ E : w(e) ≥ σ}.
2. Let each vertex in Gσ initially be unmarked.
3. Calculate the degree of each vertex v ∈ V .
4. Let the highest degree unmarked vertex be a star center, and construct a

cluster from the star center and its associated satellite vertices. Mark each
node in the newly constructed star.

5. Repeat Step 4 until all nodes are marked.
6. Represent each cluster by the document corresponding to its associated star

center.

Fig. 3. The star algorithm
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Proof. The following implementation of this algorithm has a running time
linear in the size of the graph. Each vertex v has a data structure associated
with it that contains v.degree, the degree of the vertex, v.adj, the list of ad-
jacent vertices, v.marked, which is a bit denoting whether the vertex belongs
to a star or not, and v.center, which is a bit denoting whether the vertex is
a star center. (Computing v.degree for each vertex can be easily performed
in Θ(V + Eσ) time.) The implementation starts by sorting the vertices in V
by degree (Θ(V ) time since degrees are integers in the range {0, |V |}). The
program then scans the sorted vertices from the highest degree to the low-
est as a greedy search for star centers. Only vertices that do not belong to
a star already (that is, they are unmarked) can become star centers. Upon
selecting a new star center v, its v.center and v.marked bits are set and for
all w ∈ v.adj, w.marked is set. Only one scan of V is needed to determine all
the star centers. Upon termination, the star centers and only the star centers
have the center field set. We call the set of star centers the star cover of the
graph. Each star is fully determined by the star center, as the satellites are
contained in the adjacency list of the center vertex. ��

This algorithm has two features of interest. The first feature is that the
star cover is not unique. A similarity graph may have several different star
covers because when there are several vertices of the same highest degree, the
algorithm arbitrarily chooses one of them as a star center (whichever shows up
first in the sorted list of vertices). The second feature of this algorithm is that
it provides a simple encoding of a star cover by assigning the types “center”
and “satellite” (which is the same as “not center” in our implementation) to
vertices. We define a correct star cover as a star cover that assigns the types
“center” and “satellite” in such a way that (1) a star center is not adjacent
to any other star center and (2) every satellite vertex is adjacent to at least
one center vertex of equal or higher degree.

Figure 4 shows two examples of star covers. The left graph consists of
a clique subgraph (first subgraph) and a set of nodes connected to only to
the nodes in the clique subgraph (second subgraph). The star cover of the
left graph includes one vertex from the 4-clique subgraph (which covers the
entire clique and the one nonclique vertex it is connected to), and single-
node stars for each of the noncovered vertices in the second set. The addition
of a node connected to all the nodes in the second set changes the clique
cover dramatically. In this case, the new node becomes a star center. It thus
covers all the nodes in the second set. Note that since star centers cannot
be adjacent, no vertex from the second set is a star center in this case. One
node from the first set (the clique) remains the center of a star that covers
that subgraph. This example illustrates the connection between a star cover
and other important graph sets, such as set covers and induced dominating
sets, which have been studied extensively in the literature [19, 183]. The star
cover is related but not identical to a dominating set [183]. Every star cover
is a dominating set, but there are dominating sets that are not star covers.
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N

Fig. 4. An example of a star-shaped cover before and after the insertion of the node
N in the graph. The dark circles denote satellite vertices. The shaded circles denote
star centers

Star covers are useful approximations of clique covers because star graphs are
dense subgraphs for which we can infer something about the missing edges as
we have shown earlier.

Given this definition for the star cover, it immediately follows that:

Theorem 4. The offline star algorithm produces a correct star cover.

We use the two features of the offline algorithm mentioned earlier in the
analysis of the online version of the star algorithm in Sect. 4. In Sect. 5, we
show that the clusters produced by the star algorithm are quite accurate,
exceeding the accuracy produced by widely used clustering algorithms in IR.

4 The Online Star Algorithm

The star clustering algorithm described in Sect. 3 can be used to accurately
and efficiently cluster a static collection of documents. However, it is often the
case in information systems that documents are added to, or deleted from, a
dynamic collection. In this section, we describe an online version of the star
clustering algorithm, which can be used to efficiently maintain a star clustering
in the presence of document insertions and deletions.

We assume that documents are inserted or deleted from the collection one
at a time. We begin by examining Insert. The intuition behind the incre-
mental computation of the star cover of a graph after a new vertex is inserted
is depicted in Fig. 5. The top figure denotes a similarity graph and a correct
star cover for this graph. Suppose a new vertex is inserted in the graph, as
in the middle figure. The original star cover is no longer correct for the new
graph. The bottom figure shows the correct star cover for the new graph. How
does the addition of this new vertex affect the correctness of the star cover?
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In general, the answer depends on the degree of the new vertex and its
adjacency list. If the adjacency list of the new vertex does not contain any
star centers, the new vertex can be added in the star cover as a star center.
If the adjacency list of the new vertex contains any center vertex c whose
degree is equal or higher, the new vertex becomes a satellite vertex of c. The
difficult cases that destroy the correctness of the star cover are (1) when the
new vertex is adjacent to a collection of star centers, each of whose degree
is lower than that of the new vertex and (2) when the new vertex increases
the degree of an adjacent satellite vertex beyond the degree of its associated
star center. In these situations, the star structure already in place has to be
modified; existing stars must be broken. The satellite vertices of these broken
stars must be re-evaluated.

Similarly, deleting a vertex from a graph may destroy the correctness of a
star cover. An initial change affects a star if (1) its center is removed or (2) the
degree of the center has decreased because of a deleted satellite. The satellites
in these stars may no longer be adjacent to a center of equal or higher degree,
and their status must be reconsidered.

4.1 The Online Algorithm

Motivated by the intuition in the previous section, we now describe a simple
online algorithm for incrementally computing star covers of dynamic graphs.
The algorithm uses a data structure to efficiently maintain the star covers of
an undirected graph G = (V,E). For each vertex v ∈ V , we maintain the
following data:

v.type satellite or center
v.degree degree of v
v.adj list of adjacent vertices
v.centers list of adjacent centers
v.inQ flag specifying if v being processed

Note that while v.type can be inferred from v.centers and v.degree can be
inferred from v.adj, it will be convenient to maintain all five pieces of data in
the algorithm.

The basic idea behind the online star algorithm is as follows. When a ver-
tex is inserted into (or deleted from) a thresholded similarity graph Gσ, new
stars may need to be created and existing stars may need to be destroyed.
An existing star is never destroyed unless a satellite is “promoted” to center
status. The online star algorithm functions by maintaining a priority queue
(indexed by vertex degree), which contains all satellite vertices that have the
possibility of being promoted. So long as these enqueued vertices are indeed
properly satellites, the existing star cover is correct. The enqueued satellite
vertices are processed in order by degree (highest to lowest), with satellite pro-
motion occurring as necessary. Promoting a satellite vertex may destroy one
or more existing stars, creating new satellite vertices that have the possibility
of being promoted. These satellites are enqueued, and the process repeats. We
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Fig. 5. The star cover change after the insertion of a new vertex. The larger-radius
disks denote star centers, the other disks denote satellite vertices. The star edges are
denoted by solid lines. The intersatellite edges are denoted by dotted lines. The top
figure shows an initial graph and its star cover. The middle figure shows the graph
after the insertion of a new document. The bottom figure shows the star cover of
the new graph

next describe in some detail the three routines that comprise the online star
algorithm.

The Insert and Delete procedures are called when a vertex is added to or
removed from a thresholded similarity graph, respectively. These procedures
appropriately modify the graph structure and initialize the priority queue
with all satellite vertices that have the possibility of being promoted. The
Update procedure promotes satellites as necessary, destroying existing stars
if required, and enqueuing any new satellites that have the possibility of being
promoted.

Figure 6 provides the details of the Insert algorithm. A vertex α with
a list of adjacent vertices L is added to a graph G. The priority queue Q is
initialized with α (lines 17 and 18) and its adjacent satellite vertices (lines 13
and 14).
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Insert(α, L, Gσ)
1 α.type ← satellite
2 α.degree ← 0
3 α.adj ← ∅
4 α.centers ← ∅
5 forall β in L
6 α.degree ← α.degree + 1
7 β.degree ← β.degree + 1
8 Insert(β, α.adj)
9 Insert(α, β.adj)

10 if (β.type = center)
11 Insert(β, α.centers)
12 else
13 β.inQ ← true
14 Enqueue(β, Q)
15 endif
16 endfor
17 α.inQ ← true
18 Enqueue(α, Q)
19 Update(Gσ)

Fig. 6. Pseudocode for Insert

Delete(α, Gσ)
1 forall β in α.adj
2 β.degree ← β.degree − 1
3 Delete(α, β.adj)
4 endfor
5 if (α.type = satellite)
6 forall β in α.centers
7 forall µ in β.adj
8 if (µ.inQ = false)
9 µ.inQ ← true

10 Enqueue(µ, Q)
11 endif
12 endfor
13 endfor
14 else
15 forall β in α.adj
16 Delete(α, β.centers)
17 β.inQ ← true
18 Enqueue(β, Q)
19 endfor
20 endif
21 Update(Gσ)

Fig. 7. Pseudocode for Delete

The Delete algorithm presented in Fig. 7 removes vertex α from the
graph data structures, and depending on the type of α enqueues its adjacent
satellites (lines 15–19) or the satellites of its adjacent centers (lines 6–13).

Finally, the algorithm for Update is shown in Fig. 8. Vertices are orga-
nized in a priority queue, and a vertex φ of highest degree is processed in
each iteration (line 2). The algorithm creates a new star with center φ if φ
has no adjacent centers (lines 3–7) or if all its adjacent centers have lower
degree (lines 9–13). The latter case destroys the stars adjacent to φ, and their
satellites are enqueued (lines 14–23). The cycle is repeated until the queue is
empty.

Correctness and Optimizations

The online star cover algorithm is more complex than its offline counterpart.
One can show that the online algorithm is correct by proving that it produces
the same star cover as the offline algorithm, when the offline algorithm is run
on the final graph considered by the online algorithm. We first note, however,
that the offline star algorithm need not produce a unique cover. When there
are several unmarked vertices of the same highest degree, the algorithm can
arbitrarily choose one of them as the next star center. In this context, one can
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Update(Gσ)
1 while (Q �= ∅)
2 φ ← ExtractMax(Q)
3 if (φ.centers = ∅)
4 φ.type ← center
5 forall β in φ.adj
6 Insert(φ, β.centers)
7 endfor
8 else
9 if (∀δ ∈ φ.centers, δ.degree < φ.degree)

10 φ.type ← center
11 forall β in φ.adj
12 Insert(φ, β.centers)
13 endfor
14 forall δ in φ.centers
15 δ.type ← satellite
16 forall µ in δ.adj
17 Delete(δ, µ.centers)
18 if (µ.degree ≤ δ.degree ∧ µ.inQ = false)
19 µ.inQ ← true
20 Enqueue(µ, Q)
21 endif
22 endfor
23 endfor
24 φ.centers ← ∅
25 endif
26 endif
27 φ.inQ ← false
28 endwhile

Fig. 8. Pseudocode for Update

show that the cover produced by the online star algorithm is the same as one
of the covers that can be produced by the offline algorithm. We can view a star
cover of Gσ as a correct assignment of types (that is, “center” or “satellite”)
to the vertices of Gσ. The offline star algorithm assigns correct types to the
vertices of Gσ. The online star algorithm is proven correct by induction. The
induction invariant is that at all times, the types of all vertices in V − Q are
correct, assuming that the true type of all vertices in Q is “satellite.” This
would imply that when Q is empty, all vertices are assigned a correct type,
and thus the star cover is correct. Details can be found in [28,31].

Finally, we note that the online algorithm can be implemented more ef-
ficiently than described here. An optimized version of the online algorithm
exists, which maintains additional information and uses somewhat different
data structures. While the asymptotic running time of the optimized version
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of the online algorithm is unchanged, the optimized version is often faster in
practice. Details can be found in [31].

4.2 Expected Running Time of the Online Algorithm

In this section, we argue that the running time of the online star algorithm
is quite efficient, asymptotically matching the running time of the offline star
algorithm within logarithmic factors. We first note, however, that there ex-
ist worst-case thresholded similarity graphs and corresponding vertex inser-
tion/deletion sequences that cause the online star algorithm to “thrash” (i.e.,
which cause the entire star cover to change on each inserted or deleted ver-
tex). These graphs and insertion/deletion sequences rarely arise in practice
however. An analysis more closely modeling practice is the random graph
model [78] in which Gσ is a random graph and the insertion/deletion se-
quence is random. In this model, the expected running time of the online star
algorithm can be determined. In the remainder of this section, we argue that
the online star algorithm is quite efficient theoretically. In subsequent sections,
we provide empirical results that verify this fact for both random data and a
large collection of real documents.

The model we use for expected case analysis is the random graph model
[78]. A random graph Gn,p is an undirected graph with n vertices, where each
of its possible edges is inserted randomly and independently with probability
p. Our problem fits the random graph model if we make the mathematical
assumption that “similar” documents are essentially “random perturbations”
of one another in the vector space model. This assumption is equivalent to
viewing the similarity between two related documents as a random variable.
By thresholding the edges of the similarity graph at a fixed value, for each
edge of the graph there is a random chance (depending on whether the value
of the corresponding random variable is above or below the threshold value)
that the edge remains in the graph. This thresholded similarity graph is thus a
random graph. While random graphs do not perfectly model the thresholded
similarity graphs obtained from actual document corpora (the actual similar-
ity graphs must satisfy various geometric constraints and will be aggregates
of many “sets” of “similar” documents), random graphs are easier to ana-
lyze, and our experiments provide evidence that theoretical results obtained
for random graphs closely match empirical results obtained for thresholded
similarity graphs obtained from actual document corpora. As such, we use
the random graph model for analysis and experimental verification of the
algorithms presented in this chapter (in addition to experiments on actual
corpora).

The time required to insert/delete a vertex and its associated edges and
to appropriately update the star cover is largely governed by the number of
stars that are broken during the update, since breaking stars requires inserting
new elements into the priority queue. In practice, very few stars are broken
during any given update. This is partly due to the fact that relatively few stars
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exist at any given time (as compared to the number of vertices or edges in
the thresholded similarity graph) and partly to the fact that the likelihood of
breaking any individual star is also small. We begin by examining the expected
size of a star cover in the random graph model.

Theorem 5. The expected size of the star cover for Gn,p is at most 1 +
2 log n/ log(1/(1 − p)).

Proof. The star cover algorithm is greedy: it repeatedly selects the unmarked
vertex of highest degree as a star center, marking this node and all its adjacent
vertices as covered. Each iteration creates a new star. We argue that the
number of iterations is at most 1 + 2 log n/ log(1/(1 − p)) for an even weaker
algorithm, which merely selects any unmarked vertex (at random) to be the
next star. The argument relies on the random graph model described earlier.

Consider the (weak) algorithm described earlier which repeatedly selects
stars at random from Gn,p. After i stars have been created, each of the i star
centers is marked, and some of the n − i remaining vertices is marked. For
any given noncenter vertex, the probability of being adjacent to any given
center vertex is p. The probability that a given noncenter vertex remains
unmarked is therefore (1 − p)i, and thus its probability of being marked is
1 − (1 − p)i. The probability that all n − i noncenter vertices are marked
is then

(
1 − (1 − p)i

)n−i. This is the probability that i (random) stars are
sufficient to cover Gn,p. If we let X be a random variable corresponding to
the number of star required to cover Gn,p, we then have

Pr[X ≥ i + 1] = 1 − (
1 − (1 − p)i

)n−i
.

Using the fact that for any discrete random variable Z whose range is
{1, 2, . . . , n},

E[Z] =
n∑

i=1

i × Pr[Z = i] =
n∑

i=1

Pr[Z ≥ i],

we then have

E[X] =
n−1∑
i=0

[
1 − (

1 − (1 − p)i
)n−i

]
·

Note that for any n ≥ 1 and x ∈ [0, 1], (1−x)n ≥ 1−nx. We may then derive

E[X] =
n−1∑
i=0

[
1 − (

1 − (1 − p)i
)n−i

]

≤
n−1∑
i=0

[
1 − (

1 − (1 − p)i
)n
]

=
k−1∑
i=0

[
1 − (

1 − (1 − p)i
)n
]

+
n−1∑
i=k

[
1 − (

1 − (1 − p)i
)n
]
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≤
k−1∑
i=0

1 +
n−1∑
i=k

n(1 − p)i

= k +
n−1∑
i=k

n(1 − p)i

for any k. Selecting k so that n(1−p)k = 1/n (i.e., k = 2 log n/ log(1/(1 − p))),
we have

E[X] ≤ k +
n−1∑
i=k

n(1 − p)i

≤ 2 log n/ log(1/(1 − p)) +
n−1∑
i=k

1/n

≤ 2 log n/ log(1/(1 − p)) + 1. ��

Combining the above theorem with various facts concerning the behavior
of the Update procedure, one can show the following.

Theorem 6. The expected time required to insert or delete a vertex in a ran-
dom graph Gn,p is O(np2 log2 n/ log2(1/(1 − p))), for any 0 ≤ p ≤ 1 − Θ(1).

The proof of this theorem is rather technical; details can be found in [31].
The thresholded similarity graphs obtained in a typical IR setting are almost
always dense: there exist many vertices comprising relatively few (but dense)
clusters. We obtain dense random graphs when p is a constant. For dense
graphs, we have the following corollary.

Corollary 1. The total expected time to insert n vertices into (an initially
empty) dense random graph is O(n2 log2 n).

Corollary 2. The total expected time to delete n vertices from (an n vertex)
dense random graph is O(n2 log2 n).

Note that the online insertion result for dense graphs compares favorably
to the offline algorithm; both algorithms run in time proportional to the size
of the input graph, Θ(n2), within logarithmic factors. Empirical results on
dense random graphs and actual document collections (detailed in Sect. 4.3)
verify this result.

For sparse graphs (p = Θ(1/n)), we note that 1/ ln(1/(1 − ε)) ≈ 1/ε for
small ε. Thus, the expected time to insert or delete a single vertex is
O(np2 log2 n/ log2(1/(1 − p))) = O(n log2 n), yielding an asymptotic result
identical to that of dense graphs, much larger than what one encounters in
practice. This is due to the fact that the number of stars broken (and hence
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vertices enqueued) is much smaller than the worst-case assumptions assumed
in the analysis of the Update procedure. Empirical results on sparse random
graphs (detailed in the following section) verify this fact and imply that the
total running time of the online insertion algorithm is also proportional to the
size of the input graph, Θ(n), within lower order factors.

4.3 Experimental Validation

To experimentally validate the theoretical results obtained in the random
graph model, we conducted efficiency experiments with the online star clus-
tering algorithm using two types of data. The first type of data matches our
random graph model and consists of both sparse and dense random graphs.
While this type of data is useful as a benchmark for the running time of the
algorithm, it does not satisfy the geometric constraints of the vector space
model. We also conducted experiments using 2,000 documents from the TREC
FBIS collection.

Aggregate Number of Broken Stars

As discussed earlier, the efficiency of the online star algorithm is largely gov-
erned by the number of stars that are broken during a vertex insertion or
deletion. In our first set of experiments, we examined the aggregate num-
ber of broken stars during the insertion of 2,000 vertices into a sparse random
graph (p = 10/n), a dense random graph (p = 0.2), and a graph corresponding
to a subset of the TREC FBIS collection thresholded at the mean similarity.
The results are given in Fig. 9.

For the sparse random graph, while inserting 2,000 vertices, 2,572 total
stars were broken – approximately 1.3 broken stars per vertex insertion on
average. For the dense random graph, while inserting 2,000 vertices, 3,973
total stars were broken – approximately 2 broken stars per vertex insertion
on average. The thresholded similarity graph corresponding to the TREC
FBIS data was much denser, and there were far fewer stars. While inserting
2,000 vertices, 458 total stars were broken – approximately 23 broken stars
per 100 vertex insertions on average. Thus, even for moderately large n, the
number of broken stars per vertex insertion is a relatively small constant,
though we do note the effect of lower order factors especially in the random
graph experiments.

Aggregate Running Time

In our second set of experiments, we examined the aggregate running time
during the insertion of 2,000 vertices into a sparse random graph (p = 10/n),
a dense random graph (p = 0.2), and a graph corresponding to a subset of
the TREC FBIS collection thresholded at the mean similarity. The results are
given in Fig. 10.
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Fig. 9. The dependence of the number of broken stars on the number of inserted
vertices in a sparse random graph (top left figure), a dense random graph (top right
figure), and the graph corresponding to TREC FBIS data (bottom figure)

Note that for connected input graphs (sparse or dense), the size of the
graph is on the order of the number of edges. The experiments depicted in
Fig. 10 suggest a running time for the online algorithm, which is linear in the
size of the input graph, though lower order factors are presumably present.

5 The Accuracy of Star Clustering

In this section we describe experiments evaluating the performance of the
star algorithm with respect to cluster accuracy. We tested the star algo-
rithm against two widely used clustering algorithms in IR: the single link
method [429] and the average link method [434]. We used data from the TREC
FBIS collection as our testing medium. This TREC collection contains a very
large set of documents of which 21,694 have been ascribed relevance judg-
ments with respect to 47 topics. These 21,694 documents were partitioned
into 22 separate subcollections of approximately 1,000 documents each for 22
rounds of the following test. For each of the 47 topics, the given collection of
documents was clustered with each of the three algorithms, and the cluster
that “best” approximated the set of judged relevant documents was returned.
To measure the quality of a cluster, we use the standard F measure from
IR [429]:
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Fig. 10. The dependence of the running time of the online star algorithm on the
size of the input graph for a sparse random graph (top left figure), a dense random
graph (top right figure), and the graph corresponding to TREC FBIS data (bottom
figure)

F (p, r) =
2

(1/p) + (1/r)
,

where p and r are the precision and recall of the cluster with respect to the set
of documents judged relevant to the topic. Precision is the fraction of returned
documents that are correct (i.e., judged relevant), and recall is the fraction of
correct documents that are returned. F (p, r) is simply the harmonic mean of
the precision and recall; thus, F (p, r) ranges from 0 to 1, where F (p, r) = 1
corresponds to perfect precision and recall, and F (p, r) = 0 corresponds to
either zero precision or zero recall.

For each of the three algorithms, approximately 500 experiments were
performed; this is roughly half of the 22 × 47 = 1,034 total possible ex-
periments since not all topics were present in all subcollections. In each
experiment, the (p, r, F (p, r)) values corresponding to the cluster of highest
quality were obtained, and these values were averaged over all 500 experiments
for each algorithm. The average (p, r, F (p, r)) values for the star, average-
link, and single-link algorithms were, (0.77, 0.54, 0.63), (0.83, 0.44, 0.57) and
(0.84, 0.41, 0.55), respectively. Thus, the star algorithm represents a 10.5%
improvement in cluster accuracy with respect to the average-link algorithm
and a 14.5% improvement in cluster accuracy with respect to the single-link
algorithm.
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Fig. 11. The F measure for the star clustering algorithm vs. the single link clustering
algorithm (left) and the star algorithm vs. the average link algorithm (right). The y
axis shows the F measure. The x axis shows the experiment number. Experimental
results have been sorted according to the F value for the star algorithm

Figure 11 shows the results of all 500 experiments. The first graph shows
the accuracy (F measure) of the star algorithm vs. the single-link algorithm;
the second graph shows the accuracy of the star algorithm vs. the average-
link algorithm. In each case, the results of the 500 experiments using the star
algorithm were sorted according to the F measure (so that the star algorithm
results would form a monotonically increasing curve), and the results of both
algorithms (star and single-link or star and average-link) were plotted accord-
ing to this sorted order. While the average accuracy of the star algorithm is
higher than that of either the single-link or the average-link algorithms, we
further note that the star algorithm outperformed each of these algorithms in
nearly every experiment.

Our experiments show that in general, the star algorithm outperforms
single-link by 14.5% and average-link by 10.5%. We repeated this experi-
ment on the same data set, using the entire unpartitioned collection of 21,694
documents, and obtained similar results. The precision, recall, and F values
for the star, average-link, and single-link algorithms were (0.53, 0.32, 0.42),
(0.63, 0.25, 0.36), and (0.66, 0.20, 0.30), respectively. We note that the F values
are worse for all three algorithms on this larger collection and that the star al-
gorithm outperforms the average-link algorithm by 16.7% and the single-link
algorithm by 40%. These improvements are significant for IR applications.
Given that (1) the star algorithm outperforms the average-link algorithm, (2)
it can be used as an online algorithm, (3) it is relatively simple to implement
in either of its offline or online forms, and (4) it is efficient, these experiments
provide support for using the star algorithm for offline and online information
organization.
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6 Applications of the Star Clustering Algorithm

We have investigated the use of the star clustering algorithm in a number of
different application areas including: (1) automatic information organization
systems [26, 27], (2) scalable information organization for large corpora [33],
(3) text filtering [29, 30], and (4) persistent queries [32]. In the sections that
follow, we briefly highlight this work.

6.1 A System for Information Organization

We have implemented a system for organizing information that uses the star
algorithm (see Fig. 12). This organization system consists of an augmented
version of the Smart system [18, 378], a user interface we have designed, and
an implementation of the star algorithms on top of Smart. To index the docu-
ments, we used the Smart search engine with a cosine normalization weighting
scheme. We enhanced Smart to compute a document-to-document similarity
matrix for a set of retrieved documents or a whole collection. The similarity
matrix is used to compute clusters and to visualize the clusters.

The figure shows the interface to the information organization system.
The search and organization choices are described at the top. The middle two
windows show two views of the organized documents retrieved from the Web
or from the database. The left window shows the list of topics, the number of
documents in each topic, and a keyword summary for each topic. The right
window shows a graphical description of the topics. Each topic corresponds
to a disk. The size of the disk is proportional to the number of documents
in the topic cluster and the distance between two disks is proportional to the
topic similarity between the corresponding topics. The bottom window shows
a list of titles for the documents. The three views are connected: a click in one
window causes the corresponding information to be highlighted in the other
two windows. Double clicking on any cluster (in the right or left middle panes)
causes the system to organize and present the documents in that cluster, thus
creating a view one level deeper in a hierarchical cluster tree; the “Zoom Out”
button allows one to retreat to a higher level in the cluster tree. Details on
this system and its variants can be found in [26,27,29].

6.2 Scalable Information Organization

The star clustering algorithm implicitly assumes the existence of a thresholded
similarity graph. While the running times of the offline and the online star
clustering algorithms are linear in the size of the input graph (to within lower
order factors), the size of these graphs themselves may be prohibitively large.
Consider, for example, an information system containing n documents and a
request to organize this system with a relatively low similarity threshold. The
resulting graph would in all likelihood be dense, i.e., have Ω(n2) edges. If n
is large (e.g., millions), just computing the thresholded similarity graph may



22 J.A. Aslam et al.

Fig. 12. A system for information organization based on the star clustering algo-
rithm

be prohibitively expensive, let alone running a clustering algorithm on such a
graph.

In [33], we propose three methods based on sampling and/or parallelism
for generating accurate approximations to a star cover in time linear in the
number of documents, independent of the size of the thresholded similarity
graph.

6.3 Filtering and Persistent Queries

Information filtering and persistent query retrieval are related problems
wherein relevant elements of a dynamic stream of documents are sought in
order to satisfy a user’s information need. The problems differ in how the
information need is supplied: in the case of filtering, exemplar documents are
supplied by the user, either dynamically or in advance; in the case of persistent
query retrieval, a standing query is supplied by the user.

We propose a solution to the problems of information filtering and per-
sistent query retrieval through the use of the star clustering algorithm. The
salient features of the systems we propose are (1) the user has access to the
topic structure of the document collection star clusters; (2) the query (filtering
topic) can be formulated as a list of keywords, a set of selected documents, or a
set of selected document clusters; (3) document filtering is based on prospective
cluster membership; (4) the user can modify the query by providing relevance
feedback on the document clusters and individual documents in the entire
collection; and (5) the relevant documents adapt as the collection changes.
Details can be found in [29,30,32].
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7 Conclusions

We presented and analyzed an offline clustering algorithm for static informa-
tion organization and an online clustering algorithm for dynamic information
organization. We described a random graph model for analyzing the running
times of these algorithms, and we showed that in this model, these algorithms
have an expected running time that is linear in the size of the input graph,
to within lower order factors. The data we gathered from experiments with
TREC data lend support for the validity of our model and analyses. Our em-
pirical tests show that both algorithms exhibit linear time performance in the
size of the input graph (to within lower order factors), and that both algo-
rithms produce accurate clusters. In addition, both algorithms are simple and
easy to implement. We believe that efficiency, accuracy, and ease of implemen-
tation make these algorithms very practical candidates for use in automatic
information organization systems.

This work departs from previous clustering algorithms often employed in
IR settings, which tend to use a fixed number of clusters for partitioning the
document space. Since the number of clusters produced by our algorithms is
given by the underlying topic structure in the information system, our clusters
are dense and accurate. Our work extends previous results [225] that support
using clustering for browsing applications and presents positive evidence for
the cluster hypothesis. In [26], we argue that by using a clustering algorithm
that guarantees the cluster quality through separation of dissimilar documents
and aggregation of similar documents, clustering is beneficial for information
retrieval tasks that require both high precision and high recall.
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A Survey of Clustering Data Mining
Techniques

P. Berkhin

Summary. Clustering is the division of data into groups of similar objects. In clus-
tering, some details are disregarded in exchange for data simplification. Clustering
can be viewed as a data modeling technique that provides for concise summaries of
the data. Clustering is therefore related to many disciplines and plays an important
role in a broad range of applications. The applications of clustering usually deal
with large datasets and data with many attributes. Exploration of such data is a
subject of data mining. This survey concentrates on clustering algorithms from a
data mining perspective.

1 Introduction

We provide a comprehensive review of different clustering techniques in data
mining. Clustering refers to the division of data into groups of similar objects.
Each group, or cluster, consists of objects that are similar to one another and
dissimilar to objects in other groups. When representing a quantity of data
with a relatively small number of clusters, we achieve some simplification, at
the price of some loss of detail (as in lossy data compression, for example).
Clustering is a form of data modeling, which puts it in a historical perspective
rooted in mathematics and statistics. From a machine learning perspective,
clusters correspond to hidden patterns, the search for clusters is unsuper-
vised learning, and the resulting system represents a data concept. Therefore,
clustering is unsupervised learning of a hidden data concept. Clustering as ap-
plied to data mining applications encounters three additional complications:
(a) large databases, (b) objects with many attributes, and (c) attributes of
different types. These complications tend to impose severe computational re-
quirements that present real challenges to classic clustering algorithms. These
challenges led to the emergence of powerful broadly applicable data mining
clustering methods developed on the foundation of classic techniques. These
clustering methods are the subject of this survey.
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1.1 Notations

To fix the context and clarify terminology, consider a dataset X consisting of
data points (which may in turn represent objects, instances, cases, patterns,
tuples, transactions, and so forth) xi = (xi1, . . . , xid), i = 1 : N , in attribute
space A, where each component xil ∈ Al, l = 1 : d, is a numerical or a nomi-
nal categorical attribute (which may represent a feature, variable, dimension,
component, or field). For a discussion of attribute data types see [217]. This
point-by-attribute data format conceptually corresponds to an N × d matrix
and is used by the majority of algorithms reviewed later. However, data of
other formats, such as variable length sequences and heterogeneous data, are
not uncommon.

The simplest subset in an attribute space is a direct Cartesian product
of subranges C =

∏
Cl ⊂ A, Cl ⊂ Al, called a segment (or a cube, cell,

or region). A unit is an elementary segment whose subranges consist of a
single category value or a small numerical bin. Describing the number of
data points per unit represents an extreme case of clustering, a histogram.
The histogram is a very expensive representation and not a very revealing
one. User-driven segmentation is another commonly used practice in data
exploration that utilizes expert knowledge regarding the importance of certain
subdomains. Unlike segmentation, clustering is assumed to be automatic, and
so it is unsupervised in the machine learning sense.

The goal of clustering is to assign data points to a finite system of k
subsets (clusters). These subsets do not intersect (however, this requirement
is sometimes violated in practice), and their union is equal to the full dataset
with the possible exception of outliers

X = C1

⋃
· · ·

⋃
Ck

⋃
Coutliers, Ci

⋂
Cj = 0, i �= j.

1.2 Clustering Bibliography at a Glance

General references regarding clustering include [142,155,159,188,218,224,242,
245,265,287,337,405]. A very good introduction to contemporary data mining
clustering techniques can be found in Han and Kamber [217].

Clustering is related to many other fields. Clustering has been widely used
in statistics [24] and science [328]. The classic introduction to clustering in
pattern recognition is given in [143]. For statistical approaches to pattern
recognition see [126] and [180]. Machine learning clustering algorithms were
applied to image segmentation and computer vision [243]. Clustering can be
viewed as a density estimation problem. This is the subject of traditional
multivariate statistical estimation [391]. Clustering is also widely used for data
compression in image processing, which is also known as vector quantization
[185]. Data fitting in numerical analysis provides still another venue in data
modeling [121].
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This survey’s emphasis is on clustering in data mining. Such clustering
is characterized by large datasets with many attributes of different types.
Though we do not even try to review particular applications, many important
ideas are related to specific fields. We briefly mention:

• Information retrieval and text mining [121,129,407];
• Spatial database applications, dealing with GIS or astronomical data, for

example [151,383,446];
• Sequence and heterogeneous data analysis [95];
• Web applications [113,168,226];
• DNA analysis in computational biology [55].

These and many other application-specific developments are beyond our
scope, but some general techniques have been been applied widely. These tech-
niques and classic clustering algorithms related to them are surveyed below.

1.3 Plan of Further Presentation

Classification of clustering algorithms is neither straightforward nor canoni-
cal. In fact, the different classes of algorithms overlap. Traditional clustering
techniques are broadly divided into hierarchical and partitioning. Hierarchical
clustering is further subdivided into agglomerative and divisive. The basics of
hierarchical clustering include the Lance–Williams formula, the idea of con-
ceptual clustering, the now classic algorithms SLINK and COBWEB, as well
as the newer algorithms CURE and CHAMELEON. We survey these algo-
rithms in Sect. 2.

While hierarchical algorithms gradually (dis)assemble points into clusters
(as crystals grow), partitioning algorithms learn clusters directly. In doing so,
they try to discover clusters either by iteratively relocating points between
subsets or by identifying areas heavily populated with data.

Algorithms of the first kind are called Partitioning Relocation Clustering.
They are further classified into probabilistic clustering (EM framework, al-
gorithms SNOB, AUTOCLASS, MCLUST), k -medoids methods (algorithms
PAM, CLARA, CLARANS, and their extensions), and the various k -means
methods. They are presented in Sect. 3. Such methods concentrate on how
well points fit into their clusters and tend to build clusters of proper convex
shapes.

Partitioning algorithms of the second type are surveyed in Sect. 4. These
algorithms attempt to discover dense connected components of data, which
are flexible in terms of their shape. Density-based connectivity is used in the
algorithms DBSCAN, OPTICS, and DBCLASD, while the algorithm DEN-
CLUE exploits space density functions. These algorithms are less sensitive to
outliers and can discover clusters of irregular shape. They usually work with
low-dimensional numerical data, known as spatial data. Spatial objects may
include points, but also geometrically extended objects (as in the algorithm
GDBSCAN).
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Some algorithms work with data indirectly by constructing summaries of
data over the attribute space subsets. These algorithms perform space seg-
mentation and then aggregate appropriate segments. We discuss these algo-
rithms in Sect. 5. These algorithms frequently use hierarchical agglomeration
as one phase of processing. Algorithms BANG, STING, WaveCluster, and FC
are discussed in this section. Grid-based methods are fast and handle outliers
well. The grid-based methodology is also used as an intermediate step in many
other algorithms (for example, CLIQUE and MAFIA).

Categorical data are intimately connected with transactional databases.
The concept of similarity alone is not sufficient for clustering such data. The
idea of categorical data co-occurrence comes to the rescue. The algorithms
ROCK, SNN, and CACTUS are surveyed in Sect. 6. Clustering of categorical
data grows more difficult as the number of items involved increases. To help
with this problem, the effort is shifted from data clustering to preclustering
of items or categorical attribute values. Developments based on hypergraph
partitioning and the algorithm STIRR exemplify this approach.

Many other clustering techniques have been developed, primarily in ma-
chine learning, that either have theoretical significance, are used traditionally
outside the data mining community, or do not fit in previously outlined cate-
gories. The boundary is blurred. In Sect. 7 we discuss the emerging direction
of constraint-based clustering, the important research field of graph partition-
ing, and the relationship of clustering to supervised learning, gradient descent,
artificial neural networks, and evolutionary methods.

Data mining primarily works with large databases. Clustering large data-
sets presents scalability problems reviewed in Sect. 8. We discuss algorithms
like DIGNET, BIRCH and other data squashing techniques, and Hoeffding or
Chernoff bounds.

Another trait of real-life data is high dimensionality. Corresponding devel-
opments are surveyed in Sect. 9. The trouble with high dimensionality comes
from a decrease in metric separation as the dimension grows. One approach
to dimensionality reduction uses attribute transformations (e.g., DFT, PCA,
wavelets). Another way to address the problem is through subspace cluster-
ing (as in algorithms CLIQUE, MAFIA, ENCLUS, OPTIGRID, PROCLUS,
ORCLUS). Still another approach clusters attributes in groups and uses their
derived proxies to cluster objects. This double clustering is known as coclus-
tering.

Issues common to different clustering methods are overviewed in Sect. 10.
We discuss assessment of results, determination of the appropriate number
of clusters to build, data preprocessing, proximity measures, and handling of
outliers.

For the reader’s convenience we provide a classification of clustering algo-
rithms closely followed by this survey:

• Hierarchical methods
Agglomerative algorithms
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Divisive algorithms
• Partitioning relocation methods

Probabilistic clustering
k-medoids methods
k-means methods

• Density-based partitioning methods
Density-based connectivity clustering
Density functions clustering

• Grid-based methods
• Methods based on co-occurrence of categorical data
• Other clustering techniques

Constraint-based clustering
Graph partitioning
Clustering algorithms and supervised learning
Clustering algorithms in machine learning

• Scalable clustering algorithms
• Algorithms for high-dimensional data

Subspace clustering
Coclustering techniques

1.4 Important Issues

The properties of clustering algorithms of concern in data mining include:

• Type of attributes an algorithm can handle
• Scalability to large datasets
• Ability to work with high-dimensional data
• Ability to find clusters of irregular shape
• Handling outliers
• Time complexity (we often simply use the term complexity)
• Data order dependency
• Labeling or assignment (hard or strict vs. soft or fuzzy)
• Reliance on a priori knowledge and user-defined parameters
• Interpretability of results

Realistically, with every algorithm we discuss only some of these properties.
This list is not intended to be exhaustive. For example, as appropriate, we
also discuss the algorithm’s ability to work in a predefined memory buffer, to
restart, and to provide intermediate solutions.

2 Hierarchical Clustering

Hierarchical clustering combines data objects into clusters, those clusters
into larger clusters, and so forth, creating a hierarchy. A tree representing
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this hierarchy of clusters is known as a dendrogram. Individual data objects
are the leaves of the tree, and the interior nodes are nonempty clusters.
Sibling nodes partition the points covered by their common parent. This
allows exploring data at different levels of granularity. Hierarchical clustering
methods are categorized into agglomerative (bottom-up) and divisive (top-
down) [242, 265] approaches. An agglomerative clustering starts with one-
point (singleton) clusters and recursively merges two or more of the most
similar clusters. A divisive clustering starts with a single cluster containing
all data points and recursively splits that cluster into appropriate subclusters.
The process continues until a stopping criterion (frequently, the requested
number k of clusters) is achieved. The advantages of hierarchical clustering
include:

• Flexibility regarding the level of granularity,
• Ease of handling any form of similarity or distance,
• Applicability to any attribute type.

The disadvantages of hierarchical clustering are:

• The difficulty of choosing the right stopping criteria,
• Most hierarchical algorithms do not revisit (intermediate) clusters once

they are constructed.

The classic approaches to hierarchical clustering are presented in Sect. 2.1.
Hierarchical clustering based on linkage metrics results in clusters of proper
(convex) shapes. Active contemporary efforts to build cluster systems that
incorporate our intuitive concept of clusters as connected components of arbi-
trary shape, including the algorithms CURE and CHAMELEON, are surveyed
in Sect. 2.2. Divisive techniques based on binary taxonomies are presented
in Sect. 2.3. Section 7.6 contains information related to incremental learning,
model-based clustering, and cluster refinement.

2.1 Linkage Metrics

In hierarchical clustering, our regular point-by-attribute data representation
is often of secondary importance. Instead, hierarchical clustering deals with
the N×N matrix of distances (dissimilarities) or similarities between training
points sometimes called a connectivity matrix. The so-called linkage metrics
are constructed from elements of this matrix. For a large data set, keeping
a connectivity matrix in memory is impractical. Instead, different techniques
are used to sparsify (introduce zeros into) the connectivity matrix. This can
be done by omitting entries smaller than a certain threshold, by using only a
certain subset of data representatives, or by keeping with each point only a
certain number of its nearest neighbors (for nearest neighbor chains see [353]).
The way we process the original (dis)similarity matrix and construct a linkage
metric reflects our a priori ideas about the data model.
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With the (sparsified) connectivity matrix we can associate the weighted
connectivity graph G(X,E) whose vertices X are data points, and edges E
and their weights are defined by the connectivity matrix. This establishes a
connection between hierarchical clustering and graph partitioning. One of the
most striking developments in hierarchical clustering is the BIRCH algorithm,
discussed in Sect. 8.

Hierarchical clustering initializes a cluster system as a set of singleton clus-
ters (agglomerative case) or a single cluster of all points (divisive case) and
proceeds iteratively merging or splitting the most appropriate cluster(s) un-
til the stopping criterion is satisfied. The appropriateness of a cluster(s) for
merging or splitting depends on the (dis)similarity of cluster(s) elements. This
reflects a general presumption that clusters consist of similar points. An impor-
tant example of dissimilarity between two points is the distance between them.

To merge or split subsets of points rather than individual points, the dis-
tance between individual points has to be generalized to the distance between
subsets. Such a derived proximity measure is called a linkage metric. The type
of linkage metric used has a significant impact on hierarchical algorithms,
because it reflects a particular concept of closeness and connectivity. Impor-
tant intercluster linkage metrics [346, 353] include single link , average link ,
and complete link . The underlying dissimilarity measure (usually, distance) is
computed for every pair of nodes with one node in the first set and another
node in the second set. A specific operation such as minimum (single link),
average (average link), or maximum (complete link) is applied to pairwise
dissimilarity measures:

d(C1, C2) = Op {d(x, y), x ∈ C1, y ∈ C2} .

Early examples include the algorithm SLINK [396], which implements sin-
gle link (Op = min), Voorhees’ method [433], which implements average link
(Op = Avr), and the algorithm CLINK [125], which implements complete
link (Op = max). SLINK, for example, is related to the problem of finding
the Euclidean minimal spanning tree [449] and has O(N2) complexity. The
methods using intercluster distances defined in terms of pairs of nodes (one
in each respective cluster) are naturally related to the connectivity graph
G(X,E) introduced earlier, because every data partition corresponds to a
graph partition. Such methods can be augmented by the so-called geometric
methods in which a cluster is represented by its central point. Assuming nu-
merical attributes, the center point is defined as a centroid or an average of
two cluster centroids subject to agglomeration, resulting in centroid, median,
and minimum variance linkage metrics.

All of the above linkage metrics can be derived from the Lance–Williams
updating formula [301]:

d(Ci

⋃
Cj , Ck) = a(i)d(Ci, Ck) + a(j)d(Cj , Ck) + b · d(Ci, Cj)

+ c |d(Ci, Ck) − d(Cj , Ck)| .
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Here a, b, and c are coefficients corresponding to a particular linkage. This
Lance –Williams formula expresses a linkage metric between a union of the two
clusters and the third cluster in terms of underlying nodes, and it is crucial to
making the dis(similarity) computations feasible. Surveys of linkage metrics
can be found in [123, 345]. When distance is used as a base measure, linkage
metrics capture intercluster proximity. However, a similarity-based view that
results in intracluster connectivity considerations is also used, for example, in
the original average link agglomeration (Group-Average Method) [242].

Under reasonable assumptions, such as the reducibility condition, which
graph methods satisfy, linkage metrics methods have O

(
N2

)
time complexity

[353]. Despite the unfavorable time complexity, these algorithms are widely
used. As an example, the algorithm AGNES (AGlomerative NESting) [265] is
used in S-Plus.

When the connectivity N ×N matrix is sparsified, graph methods directly
dealing with the connectivity graph G can be used. In particular, the hierar-
chical divisive MST (Minimum Spanning Tree) algorithm is based on graph
partitioning [242].

2.2 Hierarchical Clusters of Arbitrary Shapes

For spatial data, linkage metrics based on Euclidean distance naturally gener-
ate clusters of convex shapes. Meanwhile, visual inspection of spatial images
frequently reveals clusters with more complex shapes.

Guha et al. [207] introduced the hierarchical agglomerative clustering algo-
rithm CURE (Clustering Using REpresentatives). This algorithm has a num-
ber of novel and important features. CURE takes special steps to handle
outliers and to provide labeling in the assignment stage. It also uses two tech-
niques to achieve scalability: data sampling (Sect. 8), and data partitioning.
CURE creates p partitions, so that fine granularity clusters are constructed
in partitions first. A major feature of CURE is that it represents a cluster
by a fixed number, c, of points scattered around it. The distance between
two clusters used in the agglomerative process is the minimum of distances
between two scattered representatives. Therefore, CURE takes a middle ap-
proach between the graph (all-points) methods and the geometric (one cen-
troid) methods. Single link and average link closeness are replaced by repre-
sentatives’ aggregate closeness. Selecting representatives scattered around a
cluster makes it possible to cover nonspherical shapes. As before, agglomer-
ation continues until the requested number k of clusters is achieved. CURE
employs one additional trick: originally selected scattered points are shrunk
to the geometric centroid of the cluster by a user-specified factor α. Shrinkage
decreases the impact of outliers; outliers happen to be located further from
the cluster centroid than the other scattered representatives. CURE is capable
of finding clusters of different shapes and sizes. Because CURE uses sampling,
estimation of its complexity is not straightforward. For low-dimensional data,
Guha et al. provide a complexity estimate of O(N2

sample) defined in terms of
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the sample size. More exact bounds depend on the input parameters, which
include the shrink factor α, the number of representative points c, the number
of partitions p, as well as the sample size. Figure 1a illustrates agglomeration in
CURE. Three clusters, each with three representatives, are shown before and
after the merge and shrinkage. The two closest representatives are connected.

While the CURE algorithm works with numerical attributes (particularly
low-dimensional spatial data), the algorithm ROCK developed by the same
researchers [208] targets hierarchical agglomerative clustering for categorical
attributes. ROCK is discussed in Sect. 6.

The hierarchical agglomerative algorithm CHAMELEON developed by
Karypis et al. [260] uses the connectivity graph G corresponding to the K-
nearest neighbor model sparsification of the connectivity matrix: the edges
of K most similar points to any given point are preserved, and the rest are
pruned. CHAMELEON has two stages. In the first stage, small tight clusters
are built, which are input to the second stage. This involves a graph par-
titioning [460]. In the second stage, an agglomerative process is performed,
in which measures of relative interconnectivity RI(Ci, Cj) and relative close-
ness RC(Ci, Cj) are used. Both measures are locally normalized by internal
interconnectivity and closeness of clusters Ci and Cj . In this sense the mod-
eling is dynamic and depends on data locally. Normalization involves certain
nonobvious graph operations [460]. CHAMELEON relies on graph partition-
ing implemented in the library HMETIS (as discussed in Sect. 6). Agglom-
erative process depends on user-provided thresholds. A decision to merge is
made based on the combination

RI(Ci, Cj) · RC(Ci, Cj)
α

of local measures. The CHAMELEON algorithm does not depend on assump-
tions about the data model and has been shown to find clusters of different
shapes, densities, and sizes in 2D (two-dimensional) space. CHAMELEON
has complexity O(Nm + N log(N) + m2 log(m)), where m is the number of

Before After

(a) Algorithm CURE

(a) (b) (c) (d)

(b) Algorithm CHAMELEON

Fig. 1. Agglomeration in clusters of arbitrary shapes



34 P. Berkhin

subclusters built during the first initialization phase. Figure 1b (analogous to
the one in [260]) clarifies the difference between CHAMELEON and CURE.
It presents a choice of four clusters (a)–(d) for a merge. While CURE would
merge clusters (a) and (b), CHAMELEON makes the intuitively better choice
of merging (c) and (d).

2.3 Binary Divisive Partitioning

Binary taxonomies are useful in linguistics, information retrieval, and doc-
ument clustering applications. Linear algebra methods, such as those based
on the singular value decomposition (SVD), are used in collaborative filtering
and information retrieval [60]. Application of the SVD to hierarchical divisive
clustering of document collections resulted in the PDDP (Principal Direction
Divisive Partitioning) algorithm by Boley [76]. In our notation, object x is a
document, its lth attribute corresponds to a word (index term), and a matrix
X entry xil is a measure (e.g., TF-IDF) of l-term frequency in a document x.
PDDP begins with the SVD of the matrix

(X − ex̄), x̄ =
1
N

∑
i=1:N

xi, e = (1, . . . , l)T.

PDDP bisects data in Euclidean space by a hyperplane that passes through
the data centroid orthogonal to the eigenvector with the largest singular value.
A k-way split is also possible if the k largest singular values are considered.
Bisecting is a good way to categorize documents if the goal is to create a binary
tree. When k-means (2-means) is used for bisecting, the dividing hyperplane
is orthogonal to the line connecting the two centroids. The comparative study
of SVD vs. k-means approaches [385] can be consulted for further references.
Hierarchical divisive bisecting k-means was proven [407] to be preferable to
PDDP for document clustering.

While PDDP or 2-means are concerned with how to split a cluster, the
problem of which cluster to split is also important. Simple strategies are: (1)
split each node at a given level, (2) split the cluster with highest cardinality,
and (3) split the cluster with the largest intracluster variance. All three strate-
gies have problems. For a more detailed analysis of this subject and better
strategies, see [386].

2.4 Other Developments

One of the early agglomerative clustering algorithms, Ward’s method [441], is
based not on a linkage metric, but on an objective function of the sort used in
k-means. The merger decision is viewed in terms of its effect on the objective
function.

The popular hierarchical clustering algorithm for categorical data COB-
WEB [164] has two important qualities. First, it utilizes incremental learning.
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Instead of following divisive or agglomerative approaches, COBWEB dynam-
ically builds a dendrogram by processing one data point at a time. Second,
COBWEB is an example of conceptual or model-based learning. This means
that each cluster is considered as a model that can be described intrinsi-
cally, rather than as a collection of points assigned to it. COBWEB’s dendro-
gram is therefore an example of what are called classification trees. Each tree
node (cluster) C is associated with the conditional probabilities for categorical
attribute-values pairs,

Pr(xl = νlp |C ), l = 1 : d, p = 1 : |Al| .

This can be recognized as a C-specific Näıve Bayes classifier. During the con-
struction of the classification tree, every new point is passed down the tree and
the tree is potentially updated (by an insert/split/merge/create operation).
Decisions are based on the category utility function [114]

CU {C1, . . . , Ck} =
1
k

⎛
⎝∑

j=1:k

CU(Cj)

⎞
⎠

CU(Cj) =
∑
l,p

(
(Pr(xl = νlp |Cj )2 − (Pr(xl = νlp)2

)
.

Category utility is similar to the GINI index, in that it rewards clusters Cj

for increases in predictability of the categorical attribute values νlp. Being in-
cremental, COBWEB is fast with a complexity of O(tN), though it depends
nonlinearly on tree characteristics packed into a constant t. There is a similar
incremental hierarchical algorithm for all numerical attributes called CLAS-
SIT [184]. CLASSIT associates normal distributions with cluster nodes. Both
algorithms can result in highly unbalanced trees.

Chiu et al. [111] proposed another conceptual or model-based approach
to hierarchical clustering. This development contains several useful features,
such as the extension of scalability preprocessing to categorical attributes,
outlier handling, and a two-step strategy for monitoring the number of clus-
ters including BIC (defined later). A model associated with a cluster covers
both numerical and categorical attributes and constitutes a blend of Gaussian
and multinomial models. Denote corresponding multivariate parameters by θ.
With every cluster C we associate a logarithm of its (classification) likelihood

lC =
∑

xi∈C

log (p (xi |θ )) .

The algorithm uses maximum likelihood estimates for parameter θ. The dis-
tance between two clusters is defined (instead of a linkage metric) as a decrease
in log-likelihood,

d(C1, C2) = lC1 + lC2 − lC1∪C2 ,
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caused by merging the two clusters under consideration. The agglomerative
process continues until the stopping criterion is satisfied. As such, determina-
tion of the best k is automatic. This algorithm was used in the commercial
implementation of SPSS Clementine. The complexity of the algorithm is linear
in N for the summarization phase.

In traditional hierarchical clustering, once a point is assigned to a cluster,
the assignment is not changed due to its greedy approach: after a merge or
a split decision is made, the decision is not reconsidered. Though COBWEB
does reconsider its decisions, its improvement strategy is so primitive that the
resulting classification tree can also have subpar quality (though it runs fast).
Fisher [165] studied iterative hierarchical cluster redistribution to improve
the clustering in a given dendrogram. Karypis et al. [261] also researched
refinement for hierarchical clustering. In particular, they brought attention to
a relation of such a refinement to a well-studied refinement of k-way graph
partitioning [270]. For a review of parallel implementations of hierarchical
clustering, see [353].

3 Partitioning Relocation Clustering

In this section, we survey data partitioning algorithms that divide data into
several subsets. Because checking all possible subset systems is computation-
ally infeasible, certain greedy heuristics are referred to collectively as iterative
optimization. Iterative optimization refers to different relocation schemes that
iteratively reassign points between the k clusters. Unlike traditional hierar-
chical methods, in which clusters are not revisited after being constructed,
relocation algorithms can gradually improve clusters. With appropriate data,
this results in high quality clusters.

One approach to data partitioning is to take a conceptual point of view
that identifies a cluster with a certain model whose unknown parameters have
to be found. More specifically, probabilistic models assume that the data come
from a mixture of several populations whose distributions we wish to char-
acterize. Corresponding algorithms are described in Sect. 3.1. One advantage
of probabilistic methods is the interpretability of the constructed clusters.
Having concise cluster representations also allows inexpensive computation of
intracluster measures of fit that give rise to a global objective function (see
log-likelihood in Sect. 3.1).

Another approach starts with the definition of an objective function
depending on a partition. As we have seen (in Sect. 2.1), pairwise distances
or similarities can be used to compute measures of inter- and intracluster
relations. In iterative improvement approaches such pairwise computations
would be too expensive. For this reason, in the k-means and k-medoids
approaches, each cluster is associated with a unique cluster representative.
Now the computation of an objective function becomes linear in N (and in
the number of clusters k 	 N). The difference between these k-means and
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k-medoid partitioning relocation algorithms is related to how representatives
are constructed. Each k-medoid is one of the points. Representation by k-
medoids has two advantages: it presents no limitations on attribute types and
the choice of medoids is dictated by the location of a predominant fraction of
points inside a cluster and, therefore, it is insensitive to the presence of out-
liers. In k-means a cluster is represented by its centroid, which is a mean (usu-
ally weighted average) of points within a cluster. This works conveniently only
with numerical attributes and can be negatively affected by a single outlier. On
the other hand, centroids have the advantage of clear geometric and statistical
meaning. The corresponding algorithms are reviewed in Sects. 3.2 and 3.3.

3.1 Probabilistic Clustering

In the probabilistic approach, data are considered to be a sample indepen-
dently drawn from a mixture model of several probability distributions [331].
We assume that data points are generated by: (a) randomly picking a model
j with probability τj , j = 1 : k, and (b) drawing a point x from a correspond-
ing distribution. The area around the mean of each (supposedly unimodal)
distribution constitutes a natural cluster. So we associate a cluster with a cor-
responding distribution’s parameters such as mean, variance, etc. Each data
point carries not only its (observable) attributes, but also a (hidden) cluster
ID (class in pattern recognition). A point x is assumed to belong to one and
only one cluster(model) with the probabilities Pr (Cj |x ) that we try to es-
timate. The overall likelihood of the training data is its probability of being
drawn from a given mixture model

Pr (X |C ) =
∏

i=1:N

∑
j=1:k

τjPr (xi |Cj ) .

Log-likelihood log (L (X |C )) serves as an objective function, which gives rise
to the Expectation-Maximization (EM) method. For a quick introduction to
EM, see [340]. Detailed descriptions and numerous references regarding this
topic can be found in [126] and [332]. EM is a two-step iterative optimization.
Step (E) estimates probabilities Pr (x |Cj ), which is equivalent to a soft (fuzzy)
reassignment. Step (M) finds an approximation to the mixture model, given
the current soft assignments. This amounts to finding the mixture model
parameters that maximize the log-likelihood. The process continues until the
log-likelihood convergences.

Restarting and other tricks are used to facilitate finding better local op-
tima. Moore [343] suggested an acceleration of the EM method based on a
special data index, KD tree. Data are divided at each node into two descen-
dants by splitting the widest attribute at the center of its range. Each node
stores sufficient statistics (including the covariance matrix), to allow recon-
sideration of point assignment decisions (see Sect. 8). Approximate computing
over a pruned tree accelerates EM iterations.
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Probabilistic clustering has some important features:

• It can be modified to handle points that are recodes of complex structure,
• It can be stopped and resumed with consecutive batches of data, because

clusters have representation totally independent from sets of points,
• At any stage of the iterative process the intermediate mixture model can

be used to assign points to clusters (online property),
• It results in easily interpretable cluster systems.

Because the mixture model has a clear probabilistic foundation, the deter-
mination of the most suitable number of clusters k becomes more tractable.
From a data mining perspective, excessive parameter setting can cause over-
fitting, while from a probabilistic perspective, the number of parameters can
be addressed within the Bayesian framework.

The algorithm SNOB [435] uses a mixture model in conjunction with the
MML principle (regarding terms MML and BIC see Sect. 10.2). Cheeseman
and Stutz [105] developed the algorithm AUTOCLASS that utilizes a mix-
ture model and covers a broad variety of distributions, including Bernoulli,
Poisson, Gaussian, and log-normal distributions. Beyond fitting a particular
fixed mixture model, AUTOCLASS extends the search to different models
and different values of k. To do this AUTOCLASS relies heavily on Bayesian
methodology, in which a model’s complexity is reflected through certain coef-
ficients (priors) in the expression for the likelihood previously dependent only
on parameter values. This algorithm has a history of industrial usage. Finally,
the algorithm MCLUST [172] is a software package (commercially linked with
S-PLUS) for hierarchical, mixture model clustering, and discriminant analysis
using BIC for estimation of goodness of fit. MCLUST uses Gaussian models
with ellipsoids of different volumes, shapes, and orientations.

An important property of probabilistic clustering is that the mixture model
can be naturally generalized to cluster heterogeneous data. This is important
in practice when a data object corresponding to an individual person, for
example, has both multivariate static data (demographics) in combination
with variable length dynamic data (customer profile) [403]. The dynamic data
can consist of finite sequences subject to a first-order Markov model with a
transition matrix dependent on a cluster. This framework also covers data
objects consisting of several sequences, where the number ni of sequences per
object xi is subject to a geometric distribution [94]. To emulate Web browsing
sessions of different lengths, for example, a finite-state Markov model (in this
case transitional probabilities between Web site pages) has to be augmented
with a special “end” state. Cadez et al. [95] used this mixture model for
customer profiling based on transactional information.

Model-based clustering is also used in a hierarchical framework: COB-
WEB, CLASSIT, and developments in Chiu et al. [111] have already been
presented earlier. Another early example of conceptual clustering is algorithm
CLUSTER/2 [335].
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3.2 k-Medoids Methods

In k-medoids methods a cluster is represented by one of its points. We have
already mentioned that this is an easy solution because it covers any attribute
type and medoids are insensitive to outliers because peripheral cluster points
do not affect them. When medoids are selected, clusters are defined as subsets
of points close to respective medoids, and the objective function is defined as
the averaged distance or another dissimilarity measure between a point and
the corresponding medoid.

Two early versions of k-medoid methods are the algorithms PAM (Parti-
tioning Around Medoids) and CLARA (Clustering LARge Applications) [265].
PAM uses an iterative optimization that combines relocation of points between
perspective clusters with renominating the points as potential medoids. The
guiding principle for the process is to monitor the effect on an objective func-
tion, which, obviously, is a costly strategy. CLARA uses several (five) samples,
each with 40+2k points, which are each subjected to PAM. The whole dataset
is assigned to resulting medoids, the objective function is computed, and the
best system of medoids is retained.

Further progress is associated with Ng and Han [349] who introduced the
algorithm CLARANS (Clustering Large Applications based upon RANdom-
ized Search) in the context of clustering in spatial databases. They considered
a graph whose nodes are the sets of k medoids and an edge connects two nodes
if these nodes differ by exactly one medoid. While CLARA compares very
few neighbors corresponding to a fixed small sample, CLARANS uses random
search to generate neighbors by starting with an arbitrary node and randomly
checking maxneighbor neighbors. If a neighbor represents a better partition,
the process continues with this new node. Otherwise, a local minimum is
found, and the algorithm restarts until numlocal local minima are found (value
numlocal=2 is recommended). The best node (set of medoids) is returned for
the formation of a resulting partition. The complexity of CLARANS is O

(
N2

)
in terms of the number of points. Ester et al. [153] extended CLARANS to
spatial VLDB. They used R∗ trees [51] to relax the original requirement that
all the data reside in core memory: at any given moment data exploration is
focused on a branch of the whole data tree.

3.3 k-Means Methods

The k-means algorithm [223, 224] is by far the most popular clustering tool
used nowadays in scientific and industrial applications. The name comes from
representing each of the k clusters Cj by the mean (or weighted average) cj

of its points, the so-called centroid. While this representation does not work
well with categorical attributes, it makes good sense from a geometrical and
statistical perspective for numerical attributes. The sum of distances between
elements of a set of points and its centroid expressed through an appropri-
ate distance function is used as the objective function. For example, the L2
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norm-based objective function, the sum of the squares of errors between the
points and the corresponding centroids, is equal to the total intracluster vari-
ance

E(C) =
∑

j=1:k

∑
xi∈Cj

‖xi − cj‖2
.

The sum of the squares of errors (SSE) can be regarded as the negative of
the log-likelihood for a normally distributed mixture model and is widely
used in statistics. Therefore, the k-means algorithm can be derived from a
general probabilistic framework (see Sect. 3.1) [340]. Note that only means
are estimated. A simple modification would normalize individual errors by
cluster radii (cluster standard deviation), which makes a lot of sense when
clusters have different dispersions. An objective function based on the L2

norm has many unique algebraic properties. For example, it coincides with
pairwise errors,

E′(C) =
1
2

∑
j=1:k

∑
xi,yi∈Cj

‖xi − yi‖2
,

and with the difference between the total data variance and the interclus-
ter variance. Therefore, cluster separation and cluster tightness are achieved
simultaneously.

Two versions of k-means iterative optimization are known. The first ver-
sion is similar to the EM algorithm and consists of two-step major iterations
that: (1) reassign all the points to their nearest centroids, and (2) recompute
centroids of newly assembled groups. Iterations continue until a stopping crite-
rion is achieved (for example, no reassignments happen). This version, known
as Forgy’s algorithm [166], has many advantages:

• It easily works with any Lp norm,
• It allows straightforward parallelization [135]
• It does not depend on to data ordering.

The second (classic in iterative optimization) version of k-means reassigns
points based on a detailed analysis of how moving a point from its current
cluster to any other cluster would affect the objective function. If a move has a
positive effect, the point is relocated and the two centroids are recomputed. It
is not clear that this version is computationally feasible, because the outlined
analysis requires an inner loop over all member points of involved clusters
affected by centroids shifts. However, in the L2 case it is known from [58,143]
that computing the impact on a potential cluster can be algebraically reduced
to finding a single distance from its centroid to a point in question. Therefore,
in this case both versions have the same computational complexity.

There is experimental evidence that compared with Forgy’s algorithm, the
second (classic) version frequently yields better results [303,407]. In particular,
Dhillon et al. [132] noticed that a Forgy’s spherical k-means (using cosine
similarity instead of Euclidean distance) has a tendency to get stuck when
applied to document collections. They noticed that a version that reassigned
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Fig. 2. k-Means algorithm

points and immediately recomputed centroids works much better. Figure 2
illustrates both implementations.

Besides these two versions, there have been other attempts to find better
k-means objective functions. For example, the early algorithm ISODATA [42]
used merges and splits of intermediate clusters.

The popularity of the k-means algorithm is well deserved, since it is easily
understood, easily implemented, and based on the firm foundation of analysis
of variances. The k-means algorithm also has certain shortcomings:

• The result depends greatly on the initial guess of centroids,
• The computed local optimum may be quite different from the global one,
• It is not obvious how to choose a good value for k,
• The process is sensitive to outliers,
• The basic algorithm is not scalable,
• Only numerical attributes are covered,
• Resulting clusters can be unbalanced (in Forgy’s version, even empty).

A simple way to mitigate the affects of cluster initialization was suggested
by Bradley and Fayyad [84]. First, k-means is performed on several small
samples of data with a random initial guess. Each of these constructed sys-
tems is then used as a potential initialization for a union of all the samples.
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Centroids of the best system constructed this way are suggested as an intel-
ligent initial guess to ignite the k-means algorithm on the full data. Another
interesting attempt [36] is based on genetic algorithms, as discussed later.
No initialization actually guarantees a global minimum for k-means. This is
a general problem in combinatorial optimization, which is usually tackled by
allowing uphill movements. In our context, simulated annealing was suggested
in [91]. Zhang [457] suggested another way to rectify the optimization process
by soft assignment of points to different clusters with appropriate weights (as
EM does), rather than moving them decisively from one cluster to another.
The weights take into account how well a point fits into the recipient cluster.
This process involves the so-called harmonic means. In this regard, we wish
to clarify that the EM algorithm makes soft (fractional) assignments, while
the reassignment step in Forgy’s version exercises “winner-take-all” or hard
assignment. A brilliant earlier analysis of where this subtle difference leads
has been conducted by Kearns et al. [266].

For a thorough treatment of k-means scalability, see Bradley et al.’s ex-
cellent study [85] (also see Sect. 8 for a general discussion). A generic method
to achieve scalability is to preprocess or squash the data. Such preprocessing
usually also takes care of outliers. Preprocessing has drawbacks. It results in
approximations that sometimes negatively affect final cluster quality. Pelleg
and Moore [357] suggested how to directly (without any squashing) acceler-
ate the k-means iterative process by utilizing KD trees [343]. The algorithm
X-means [358] goes a step further: in addition to accelerating the iterative
process, it tries to incorporate a search for the best k in the process itself.
While more comprehensive criteria for finding optimal k require running in-
dependent k-means and then comparing the results (costly experimentation),
X-means tries to split a part of the already constructed cluster based on the
outcome of the BIC criterion. This gives a much better initial guess for the
next iteration and covers a user specified range of admissible k.

The tremendous popularity of k-means algorithm has brought to life many
other extensions and modifications. Mahalanobis distance can be used to cover
hyperellipsoidal clusters [325]. The maximum of intracluster variances, instead
of the sum, can serve as an objective function [200]. Generalizations that
incorporate categorical attributes are also known: the term prototype is used
in this context [234] instead of the term centroid. Modifications that construct
clusters of balanced size are discussed in Sect. 7.1.

4 Density-Based Partitioning

An open set in the Euclidean space (actually in topological space) can be
divided into its connected components. The implementation of this idea for
partitioning a discrete set of points requires concepts of density, connectivity,
and boundary. Definitions of these concepts are closely related to a point’s
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Fig. 3. Irregular shapes

nearest neighbors. A cluster, defined as a connected dense component, grows
in any direction that density leads. Therefore, density-based algorithms are
capable of discovering clusters of arbitrary shapes. Also this provides a nat-
ural protection against outliers. Figure 3 illustrates some cluster shapes that
present a problem for partitioning relocation clustering (e.g., k-means), but
are handled properly by density-based algorithms. Density-based algorithms
are scalable. These outstanding properties come along with certain incon-
veniences. One inconvenience is that a single dense cluster consisting of two
adjacent areas with significantly different densities (both higher than a thresh-
old) is not very informative. Another drawback is a lack of interpretability.
An excellent introduction to density-based methods is contained in [217].

Because density-based algorithms require a metric space, the natural set-
ting for them is spatial data [218, 287]. To make computations feasible, some
index of data is constructed (such as an R∗ tree). Index construction is a
topic of active research. Classic indices were effective only with reasonably
low-dimensional data.

There are two major approaches for density-based methods. The first ap-
proach pins density to a training data point and is reviewed in Sect. 4.1.
Representative algorithms include DBSCAN, GDBSCAN, OPTICS, and DB-
CLASD. The second approach pins density to a point in the attribute space
and is explained in Sect. 4.2. It is represented by the algorithm DENCLUE
that is less affected by data dimensionality.

4.1 Density-Based Connectivity

Crucial concepts in this section are density and connectivity, both measured
in terms of local distribution of nearest neighbors.

The algorithm DBSCAN (Density Based Spatial Clustering of Applica-
tions with Noise) by Ester et al. [152] targeting low-dimensional spatial data
is the major representative in this category. Two input parameters ε and
MinPts are used to introduce:
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1. An ε-neighborhood Nε(x) = {y ∈ X | dist(x, y) ≤ ε} of the point x,
2. A core object, a point with a |Nε(x)| ≥ MinPts,
3. A notion of a point y density-reachable from a core object x (a sequence

of core objects between x and y exists such that each belongs next to an
ε-neighborhood of its predecessor),

4. A definition of density-connectivity between two points x, y (they should
be density-reachable from a common core object).

Density-connectivity is an equivalence relation. All the points reachable from
core objects can be factorized into maximal connected components serving
as clusters. The points not connected to any core point are declared to be
outliers and are not covered by any cluster. The noncore points inside a cluster
represent its boundary. Finally, core objects are internal points.

DBSCAN processing is independent of data ordering. Obviously, effective
computing of ε-neighborhoods presents a problem. For low-dimensional spatial
data effective (meaning O (log(N)) rather than O (N) fetches per search) in-
dexing schemes exist. The algorithm DBSCAN relies on R∗ tree indexing [293].
Therefore, in low-dimensional spatial data the theoretical complexity of DB-
SCAN is O (Nlog(N)). Experiments confirm slightly superlinear runtime.

Note that DBSCAN relies on ε-neighborhoods and on frequency counts
within such neighborhoods to define core objects. Many spatial databases con-
tain extended objects such as polygons instead of points. Any reflexive and
symmetric predicate (for example, “two polygons have a nonempty intersec-
tion”) suffices to define a “neighborhood.” Additional measures (as intensity
of a point) can be used instead of a simple count as well. These two gener-
alizations lead to the algorithm GDBSCAN [383], which uses the same two
parameters as DBSCAN.

With regard to the two parameters ε and MinPts, there is no straight-
forward way to fit them to data. Moreover, different parts of the data set
could require different parameters – the problem discussed earlier in con-
junction with CHAMELEON. The algorithm OPTICS (Ordering Points To
Identify the Clustering Structure) developed by Ankerst et al. [23] adjusts
DBSCAN to address this issue. OPTICS builds an augmented ordering of
data, which is consistent with DBSCAN, but goes a step further: keeping the
same two parameters ε and MinPts, OPTICS covers a spectrum of all different
ε′ ≤ ε . The constructed ordering can be used automatically or interactively.
With each point, OPTICS stores only two additional fields, the so-called core
and reachability-distances. For example, the core distance is the distance to
MinPts’ nearest neighbor when it does not exceed ε, or undefined otherwise.
Experimentally, OPTICS exhibits runtime roughly equal to 1.6 of DBSCAN
runtime.

While OPTICS can be considered an extension of DBSCAN in the di-
rection of different local densities, a more mathematically sound approach
is to consider a random variable equal to the distance from a point to its
nearest neighbor and to learn its probability distribution. Instead of relying
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on user-defined parameters, a possible conjecture is that each cluster has its
own typical distance-to-nearest-neighbor scale. The goal is to discover these
scales. Such a nonparametric approach is implemented in the algorithm DB-
CLASD (Distribution Based Clustering of Large Spatial Databases) [446].
Assuming that points inside each cluster are uniformly distributed (which
may or may not be realistic), DBCLASD defines a cluster as a nonempty ar-
bitrary shape subset in X that has the expected distribution of distance to
the nearest neighbor with a required confidence and is the maximal connected
set with this quality. DBCLASD handles spatial data, of the form used to
describe a minefield, for example. The χ2 test is used to check a distribution
requirement, with the standard consequence that each cluster has to have at
least 30 points. Regarding connectivity, DBCLASD relies on a grid-based ap-
proach to generate cluster-approximating polygons. The algorithm contains
provisions for handling real databases with noise and implements incremental
unsupervised learning. Two techniques are used. First, assignments are not
final: points can change cluster membership. Second, certain points (noise) are
not assigned, but are tried later. Therefore, once incrementally fetched, points
can be revisited internally. DBCLASD is known to run faster than CLARANS
by a factor of 60 on some examples. In comparison with the much more ef-
ficient DBSCAN, it can be 2–3 times slower. However, DBCLASD requires
no user input, while an empirical search for appropriate parameters requires
several DBSCAN runs. In addition, DBCLASD discovers clusters of different
densities.

4.2 Density Functions

Hinneburg and Keim [229] shifted the emphasis from computing densities
pinned to data points to computing density functions defined over the at-
tribute space. They proposed the algorithm DENCLUE (DENsity-based
CLUstEring). Along with DBCLASD, it has a firm mathematical foundation.
DENCLUE uses a density function,

fD(x) =
∑

y∈D(x)

f(x, y),

which is the superposition of several influence functions. When the f -term
depends on x− y, the formula can be recognized as a convolution with a ker-
nel. Examples include a square wave function f(x, y) = θ (‖x − y‖ /σ) equal
to 1, if the distance between x and y is less than or equal to σ, and a Gaussian
influence function f(x, y) = exp

(
−‖x − y‖2

/2σ
)
. This provides a high level

of generality: the first example leads to DBSCAN, and the second to k-means
clusters! Both examples depend on the parameter σ. Restricting the sum-
mation to D = {y : ‖x − y‖ < kσ} ⊂ X enables a practical implementation.
DENCLUE concentrates on local maxima of density functions called density
attractors and uses a gradient hill-climbing technique to find them. In addition
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to center-defined clusters, arbitrary-shape clusters are defined as unions of lo-
cal shapes along sequences of neighbors whose local densities are no less than
a prescribed threshold ξ. The algorithm is stable with respect to outliers. The
authors show how to choose parameters σ and ξ. DENCLUE scales well, be-
cause at its initial stage it builds a map of hypercubes with edge length 2σ. For
this reason, the algorithm can be classified as a grid-based method. Applica-
tions include high-dimensional multimedia and molecular biology data. While
no clustering algorithm could have less than O (N) complexity, the runtime
of DENCLUE scales with N sublinearly! The explanation is that though all
the points are fetched, the bulk of the analysis in the clustering stage involves
only points in highly populated areas.

5 Grid-Based Methods

In Sect. 4, the crucial concepts of density, connectivity, and boundary were
used that required elaborate definitions given purely in terms of distances
between the points. Another way of dealing with these concepts is to in-
herit the topology from the underlying attribute space. To limit the amount
of computations, multirectangular segments are considered (in like fashion
to grids in analysis). Recall that a segment (also cube, cell, or region) is
a direct Cartesian product of individual attribute subranges. Because some
binning is usually adopted for numerical attributes, methods that partition
the space are frequently called grid-based methods. The elementary seg-
ment, whose sides correspond to single-bins or single-value subranges, is called
a unit.

In this section our attention is shifted from data to space partitioning. Data
partitioning is induced by a point’s membership in segments resulting from
space partitioning, while space partitioning is based on grid characteristics
accumulating from input data. One advantage of this indirect handling (data
→ grid data → space partitioning → data partitioning) is that accumulation of
grid data makes grid-based clustering techniques independent of data ordering
in contrast with relocation methods. Also notice that while density-based
partitioning methods work best with numerical attributes, grid-based methods
work with attributes of various types.

To some extent, the grid-based methodology reflects a technical point of
view. The category is eclectic: it contains both partitioning and hierarchical
algorithms. The algorithm DENCLUE from Sect. 4.2 uses grids at its initial
stage and so it can be partially classified as grid based. The very important
grid-based algorithm CLIQUE and its descendent, algorithm MAFIA, are
presented in Sect. 9. In this section we review algorithms that rely on grid-
based techniques as their principal instrument.

Schikuta and Erhart [389] introduced BANG clustering that summarizes
data over the segments. The segments are stored in a special BANG structure
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Fig. 4. Algorithm STING

that is a grid-directory incorporating different scales. Adjacent segments are
considered neighbors. If a common face has maximum dimension they are
called nearest neighbors. More generally, neighbors of degree (dimensions of a
common face) between 0 and d − 1 can be defined. The density of a segment
is defined as a ratio between the number of points in that segment and its
volume. From the grid directory, a hierarchical clustering (a dendrogram) is
calculated directly. The algorithm BANG improves the similar earlier hierar-
chical algorithm GRIDCLUST [388].

The algorithm STING (STatistical INformation Grid-based method) de-
veloped by Wang et al. [437] works with numerical attributes (spatial data)
and is designed to facilitate “region oriented” queries. STING assembles sum-
mary statistics in a hierarchical tree of nodes that are grid cells. Figure 4 illus-
trates the proliferation of cells in two-dimensional space and the construction
of the corresponding tree. Each cell has four (default) children. Each cell stores
a point count, and attribute-dependent measures: mean, standard deviation,
minimum, maximum, and distribution type. Measures are accumulated start-
ing from bottom-level cells. They are further aggregated to higher-level cells
(e.g., minimum is equal to a minimum among the children minimums). Ag-
gregation works fine for each measure except those of a distribution type, in
which case the χ2-test is used after bottom cell distribution types are hand-
picked. When the cell tree is constructed (in O (N) time), certain cells are
identified and connected in clusters similar to DBSCAN. If the cell tree has
K leaves, the cluster construction phase depends on K and not on N . STING
is parallelizable and allows for multiresolution, but defining an appropriate
level of granularity is not straightforward. STING+ [439] is an enhancement
of STING that targets dynamically evolving spatial databases using a hi-
erarchical cell organization similar to its predecessor. In addition, STING+
enables active data mining by supporting user-defined trigger conditions
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(e.g., “at least 10 cellular phones are in use per square mile in a region of at
least 10 square miles,” or “usage drops by 20% in a described region”). The re-
lated measures (“subtriggers”) are stored and updated over the cell tree. They
are suspended until the trigger fires with user-defined action. Four types of
conditions are supported: absolute and relative conditions on regions (a set of
adjacent cells), and absolute and relative conditions on certain attributes.

The algorithm WaveCluster [394] also works with numerical attributes and
supports an advanced multiresolution. It is known for the following outstand-
ing properties:

• High-quality clusters,
• The ability to work well in relatively high-dimensional spatial data,
• Successful outlier handling,
• O (N) complexity (it, however, exponentially grows with the dimension).

WaveCluster is based on ideas of signal processing, in that it applies wavelet
transforms to filter the data. Note that high-frequency parts of a signal cor-
respond to boundaries, while low-frequency high-amplitude parts of a signal
correspond to clusters’ interiors. The wavelet transform provides useful fil-
ters. For example, a hat-shaped filter forces dense areas to serve as attractors
and simultaneously suppresses less dense boundary areas. After getting back
from the signal to the attribute space this makes clusters sharper and elimi-
nates outliers. WaveCluster proceeds in stages: (1) bin every dimension, assign
points to units, and compute unit summaries, (2) apply discrete wavelet trans-
form to the accumulated units, (3) find connected components (clusters) in the
transformed attribute space (corresponding to a certain level of resolution),
and (4) assign points.

The hierarchy of grids allows definition of the Hausdorff Fractal Dimen-
sion (HFD) [387]. The HFD of a set is the negative slope of a log–log plot
of the number of cells Cell(r) (occupied by a set) as a function of a grid size
r. A fast (box counting) algorithm to compute HFD was introduced in [314].
The concept of HFD is fundamental to the FC (fractal clustering) algorithm
by Barbara and Chen [49] dealing with numeric attributes. FC works with
several layers of grids. The cardinality of each dimension increases four times
with each next layer. Although only occupied cells are kept to save memory,
memory usage is still a significant problem. FC starts by initializing k clus-
ters. The initialization threshold and a data sample are used at this stage to
come up with an appropriate k. Then FC scans the full data incrementally
attempting to add the incoming point to a cluster so as to minimally increase
its HFD. If the smallest increase exceeds the threshold τ , a point is declared
an outlier. The FC algorithm has some appealing properties:

• Incremental structure (batches of data are fetched into main memory),
• Suspendable nature always ready for online assignments,
• Ability to discover clusters of irregular shapes,
• O (N) complexity.
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as well as a few drawbacks:

• Data order dependency,
• Strong dependency on cluster initialization,
• Dependency on parameters (threshold used in initialization, and τ).

6 Co-occurrence of Categorical Data

This section focuses on clustering categorical data. Such data are often
related to transactions involving a finite set of elements, or items, in a com-
mon item universe. For example, market basket data have this form. Every
transaction is a set of items that can be represented in a point-by-attribute
format, by enumerating all items j, and by associating with a transaction
binary attributes that indicate whether the j-item belongs to a transaction
or not. Such a representation is sparse, and high dimensional: two random
transactions will in general have very few items in common. This is why the
similarity (Sect. 10.4) between any two transactions is usually measured with
the Jaccard coefficient sim(T1, T2) = |T1

⋂
T2| / |T1

⋃
T2|. In this situation,

conventional clustering methods based on cosine similarity measures do not
work well. However, because categorical/transactional data are important in
customer profiling, assortment planning, Web analysis, and many other ap-
plications, different clustering methods founded on the idea of co-occurrence
have been developed.

The algorithm ROCK (Robust Clustering algorithm for Categorical Data)
[208] deals with categorical data and has many features in common with the
hierarchical clustering algorithm CURE discussed in Sect. 2. That is, ROCK:

• Does hierarchical agglomerative clustering
• Continues agglomeration until a specified number k of clusters are con-

structed
• Uses data sampling in the same way as CURE does

ROCK defines a neighbor of a point x as a point y such that sim(x, y) ≥ θ
for some threshold θ, and it defines link(x, y) between two points x, y as the
number of neighbors they have in common. Clusters consist of points with a
high degree of connectivity: link(x, y) for pairs of points inside a cluster is on
average high. ROCK utilizes the objective function

E =
∑

j=1:k

|Cj | ×
∑

x,y∈Cj

link(x, y)/ |Cj |1+2f(θ)
,

where f(θ) is a data-dependent function. E represents a specifically normal-
ized intraconnectivity measure.

To put this formula into perspective, we note that linkage metrics normal-
ize the aggregate measures (combining measures associated with each edge)
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by the number of edges. For example, the average link metric is the sum of
distances between each point in Ci and each point in Cj divided by the (nor-
malization) factor L = |Ci| · |Cj |. The value L can be rationalized on a more
general level. If the expected number of edges per cluster is |C|β , β ∈ [1, 2],
then the aggregate intercluster similarity has to be normalized by the factor
(|Ci| + |Cj |)β − |Ci|β − |Cj |β representing the number of intercluster edges.
The average link normalization factor L corresponds to β = 2, i.e., complete
connectivity. The ROCK objective function uses the same idea but fits it
with parameters. Whether an obtained model fits particular data is an open
question. To facilitate fitting the data, ROCK relies on an input parameter
θ and on a function f(θ). Frequently, different regions of data have different
properties, and a global fit is therefore impossible. ROCK has a complexity of
O
(
cmNsample + N2

sample log(Nsample)
)
, where the coefficient cm is a product

of average and maximum number of neighbors.
The algorithm SNN (Shared Nearest Neighbors) [150] blends a density-

based approach with the “shared nearest neighbors” idea of ROCK. SNN
sparsifies the similarity matrix (therefore, unfortunately resulting in O

(
N2

)
complexity) by only keeping K-nearest neighbors. The idea of using shared
nearest neighbors in clustering was suggested by Jarvis [247], see also [204],
long ago.

The algorithm CACTUS (Clustering Categorical Data Using Summaries)
by Ganti et al. [181] looks for hyperrectangular clusters (called interval re-
gions) in point-by-attribute data with categorical attributes. In our terminol-
ogy such clusters are segments. CACTUS is based on the idea of co-occurrence
for attribute-value pairs. A uniform distribution within the range of values
for each attribute is assumed. Two values a, b of two different attributes are
strongly connected if the number of data points having both a and b is larger
than the frequency expected under an independence assumption by a user-
defined margin α. This definition is extended to subsets A,B of two different
attributes (each value pair a ∈ A, b ∈ B has to be strongly connected), to
segments (each two-dimensional projection is strongly connected), and to the
similarity of pair of values of a single attribute via connectivity to other at-
tributes. The cluster is defined as the maximal strongly connected segment
having at least α times more elements than expected from the segment un-
der the attribute independence assumption. CACTUS uses data summaries to
generate all the strongly connected value pairs. As a second step, a heuristic
is used to generate maximum segments. The complexity of the summarization
phase is O (cN), where the constant c depends on whether all the attribute-
value summaries fit in memory (one data scan) or not (multiple data scans).

Clustering transactional data becomes more difficult when the size of
item universe grows. Here we have a classic case of low separation in high-
dimensional space (Sect. 9). With categorical data, the idea of auxiliary
items or more generally of grouping categorical values gained popularity.
This is very similar to the idea of coclustering (Sect. 9.3). This attribute
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value clustering, done as a preprocessing step, becomes the major concern,
while the subsequent data clustering becomes a lesser issue.

The work of Han et al. [215] exemplifies this approach for transactional
data. After items are clustered (a major step), a very simple method to clus-
ter transactions themselves is used: each transaction T is assigned to a clus-
ter Cj of items having most in common with T , as defined by a function
| T

⋂
Cj | / |Cj |. Other choices are possible, but again the primary objective

is to find item groups. To achieve this, association rules and hypergraph ma-
chineries are used. First, frequent item sets are generated from the transac-
tional data. A hypergraph H = (V,E) is associated with the item universe.
Vertices V are items. In a common graph, pairs of vertices are connected by
edges. In a hypergraph several vertices are connected by hyperedges. Hyper-
edge e ∈ E in H corresponds to a frequent item set {ν1, . . . , νs} and has a
weight equal to an average of confidences among all association rules involv-
ing this item set. We thereby transform the original problem into hyper-graph
partitioning problem. A solution to the problem of k-way partitioning of a hy-
pergraph H is provided by algorithm HMETIS [258].

Gibson et al. [188] introduced the algorithm STIRR (Sieving Through
Iterated Reinforcement), which deals with co-occurrence phenomenon for d-
dimensional categorical objects, tuples. STIRR uses a beautiful technique from
functional analysis. Define configurations as weights w = {wν} over all differ-
ent values ν for each of d categorical attributes. We wish to define transforma-
tions over these weights. To do so, assume that a value ν belongs to the first
attribute, and consider all data tuples of the form x = (ν, u2, . . . , ud). Then
we define a weight update w′

ν =
∑

x,ν∈x zx, where zx = Φ (wu2 , . . . , wud
).

This weight update depends on a combining operator Φ. An example of a
combining operator is Φ (w2, . . . , wd) = w2 + · · · + wd. To get a transforma-
tion, an update is followed by a renormalization of weights among the values
of each attribute. This purely technical transformation reflects a fundamen-
tal idea of this section: weights of the items propagate to other items with
which the original items co-occur. If we start with some weights and propa-
gate them several times, then assuming that propagation process stabilizes,
we get some balanced weights. The major iteration scans the data X and
results in one transformation. Function f can be considered as a dynamic
system wnew = f(w) (nonlinear, if Φ is nonlinear).

STIRR relies deeply ideas from spectral graph partitioning. For a linear
dynamic system defined over the graph, a reorthogonalization Gram–Schmidt
process can be engaged to compute its eigenvectors that introduce negative
weights. The few first nonprincipal eigenvectors (nonprincipal basins) define
a graph partitioning corresponding to positive/negative weights. The process
works as follows: a few weights (configurations) wq = {wq

ν} are initialized. A
major iteration updates them, wq

new = f(wq), and new weights are reorthog-
onalized. The process continues until a fixed point of the dynamic system
is achieved. Nonprincipal basins are analyzed. In STIRR a dynamic system
instead of association rules formalizes co-occurrence. Additional references
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related to spectral graph partitioning can be found in [188]. As the process
does not necessarily converge, further progress is related to the modification
of the dynamic system that guarantees the convergence [461].

7 Other Clustering Techniques

A number of other clustering algorithms have been developed. Constraint-
based clustering deals with the use of specific application requirements. Graph
partitioning is an independent active research field. Some algorithms have
theoretical significance or are mostly used in applications other than data
mining.

7.1 Constraint-Based Clustering

In real-world applications customers are rarely interested in unconstrained
solutions. Clusters are frequently subjected to some problem-specific limita-
tions that make them suitable for particular business actions. Finding clusters
satisfying certain limitations is the subject of active research; for example, see
a survey by Han et al. [218]. The framework for constraint-based clustering
is introduced in [425]. Their taxonomy of clustering constraints includes con-
straints on individual objects (e.g., customer who recently purchased) and pa-
rameter constraints (e.g., number of clusters) that can be addressed through
preprocessing or external cluster parameters. Their taxonomy also includes
constraints on individual clusters that can be described in terms of bounds
on aggregate functions (min, avg, etc.) over each cluster. These constraints
are essential, because they require a new methodology. In particular, an exis-
tential constraint is a lower bound on a count of objects of a certain subset
(i.e., frequent customers) in each cluster. Iterative optimization used in par-
titioning clustering relies on moving objects to their nearest cluster represen-
tatives. This movement may violate such constraints. The authors developed
a methodology of how to incorporate constraints in the partitioning process.

The most frequent requirement is to have a minimum number of points in
each cluster. Unfortunately, the popular k-means algorithm sometimes pro-
vides a number of very small (in certain implementations empty) clusters.
Modification of the k-means objective function and the k-means updates to
incorporate lower limits on cluster volumes is suggested by Bradley et al. [86].
This modification includes soft assignments of data points with coefficients
subject to linear program requirements. Banerjee and Ghosh [44] presented
another modification to the k-means algorithm. Their objective function cor-
responds to an isotropic Gaussian mixture with widths inversely proportional
to the numbers of points in the clusters. The result is the frequency sensitive
k-means. Still another approach to building balanced clusters is to convert
the task into a graph-partitioning problem [409].
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No obstacles River with the bridge

Fig. 5. COD

An important constraint-based clustering application is clustering two-
dimensional spatial data in the presence of obstacles. Instead of regular Euclid-
ean distance, a length of the shortest path between two points can be used
as an obstacle distance. The COD (Clustering with Obstructed Distance) al-
gorithm [426] deals with this problem. COD is illustrated in Fig. 5, where
we show the difference in constructing three clusters in the absence of any
obstacle (left) and in the presence of a river with a bridge (right).

7.2 Graph Partitioning

We now briefly discuss the active research field of graph partitioning. Graphs
frequently exhibit a clustering tendency and are important in many applica-
tions (e.g., VLSI design). The domain of graph clustering has a methodology
of its own. A graph can be partitioned by simply deleting (cutting) some of its
edges. Minimal number of cuts is desirable, but this is known to give very un-
balanced clusters. Therefore a min-cut objective function is usually modified.
Different modifications of this objective function are evaluated in [462].

Exact optimization of any min-cut modification is NP hard. Much progress
was achieved with the introduction of an algebraic technique related to a
second eigenvector of a Laplacian operator, which is simply a graph adjacency
matrix with a changed main diagonal [161]. Since then, spectral methods have
been under constant development [53,139,206,212,348]. A general discussion
on the topic can be found in [431]. For spectral methods in the context of
document clustering, see [128].

Another approach to graph partitioning is based on the idea of graph
flows. A survey of this research is presented in [309]. A specific Markov cluster
algorithm based on the simulation of (stochastic) flow is described in [428].

7.3 Relation to Supervised Learning

Both Forgy’s k-means implementation and EM algorithms are iterative op-
timizations. Both initialize k models and then engage in a series of two-step
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iterations that: (1) reassign (hard or soft) data points, and then (2) update
a combined model. This process can be generalized to a framework relating
clustering with predictive mining [253]. A model update can be considered as
training a predictive classifier based on current assignments serving as the tar-
get attribute values supervising the learning. Points are reassigned according
to the forecast of the recently trained classifier.

Liu et al. [320] suggested another elegant connection to supervised learn-
ing. They considered a binary target attribute defined as Yes on points subject
to clustering, and defined as No on synthetically generated points uniformly
distributed in the attribute space. A decision tree classifier is trained on the
full data. Yes-labeled leaves correspond to clusters of input data. The algo-
rithm CLTree (CLustering based on decision Trees) resolves the challenges of
populating the input data with artificial No points by: (1) adding points grad-
ually following the tree construction; (2) making this process virtual (without
physical additions to input data); and (3) simulating the uniform distribution
in higher dimensions.

7.4 Gradient Descent and Artificial Neural Networks

Soft reassignments make a lot of sense if the k-means objective function is
modified to incorporate “fuzzy errors” (similar to EM), i.e., to account for
distances not only to the closest centroids, but also to more distant centroids:

E′(C) =
∑

i=1:N

∑
j=1:k

‖xi − cj‖2
ω2

ij .

The probabilities ω are defined based on Gaussian models. This makes the
objective function differentiable with respect to means and allows application
of general gradient descent methods. Marroquin and Girosi [327] presented
a detailed introduction to this subject in the context of vector quantization.
The gradient decent method in k-means is known as LKMA (Local k-Means
Algorithm). At each iteration t, LKMA updates means ct

j ,

ct+1
j = ct

j + at

∑
i=1:N

(xi − ct
j)w

2
ij , or ct+1

j = ct
j + at(xi − ct

j)w
2
ij ,

in the direction of gradient descent. In the second case index i is selected ran-
domly between 1 and N . The scalars at satisfy certain monotone asymptotic
behavior and converge to 0, and the coefficients w are defined through ω [81].
Such updates are also used in the context of artificial neural network (ANN)
clustering, specifically SOM (Self-Organizing Map) [283]. SOM is popular in
vector quantization and is described in the monograph [284]. We do not elab-
orate on SOM here except for two remarks: (1) SOM uses an incremental
approach – points (patterns) are processed one at a time; and (2) SOM al-
lows one to map centroids into the two-dimensional plane making it one of a
very few successful clustering visualization techniques. In addition to SOM,
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other ANN developments, such as adaptive resonance theory [97], are related
to clustering. For further discussion, see [244].

7.5 Evolutionary Methods

Substantial information on the application of simulated annealing in the con-
text of partitioning (main focus) or hierarchical clustering has been accu-
mulated, including the algorithm SINICC (SImulation of Near-optima for
Internal Clustering Criteria) [91]. The perturbation operator used in gen-
eral annealing has a simple meaning in clustering, namely the relocation of a
point from its current to a new randomly chosen cluster. SINICC also tries
to address the interesting problem of choosing the most appropriate objective
function. It has a real application – surveillance monitoring of ground-based
entities by airborne and ground-based sensors. Similar to simulating annealing
is the so-called tabu search [16].

Genetic Algorithms (GA) [197] are also used in cluster analysis. An ex-
ample is the GGA (Genetically Guided Algorithm) for fuzzy and hard k-
means [213]. Sarafis et al. [384] applied GA in the context of k-means objec-
tive functions. A population is a set of “k-means” systems represented by grid
segments instead of centroids. Every segment is described by d rules (genes),
one per attribute range. The population is improved through mutation and
crossover specifically devised for these rules. Unlike normal k-means, GGA
clusters can have different sizes and elongations; however, shapes are restricted
to just k segments. GA have also been applied to clustering of categorical data
using generalized entropy to define dissimilarity [117].

Evolutionary techniques rely on parameters to empirically fit data and
have high computational costs that limit their application in data mining.
However, combining evolutionary techniques with other strategies (e.g., the
generation of initial partitions for k-means) has been attempted [36, 37]. Use
of GA with variable length genomes to simultaneously improve k-means cen-
troids and k itself [305] also compares favorably with running multiple k-
means to determine k, because changes in k happen before full convergence
is achieved.

7.6 Other Developments

Some clustering methods do not fit in our classification. For example, for two-
dimensional spatial data (such as is found in GIS databases) the algorithm
AMOEBA [154] uses Delaunay diagrams (the dual of Voronoi diagrams) to
represent data proximity and has O (N log(N)) complexity.

Harel and Koren [221] suggested an approach related to agglomerative
hierarchical graph clustering that successfully finds local clusters in two-
dimensional. Consider a connectivity graph G(X,E). The graph can be made
sparse through the use of Delaunay diagrams or by keeping with any point only
its K-nearest neighbors. The method relies on a random walk to find separat-
ing edges F so that clusters become connected components of G(X,E − F ).
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8 Scalability and VLDB Extensions

Clustering algorithms face scalability problems in terms of both computing
time and memory requirements. In data mining, reasonable runtime and abil-
ity to run in limited amounts of main memory become especially important.
There have been many interesting attempts to extend clustering to very large
databases (VLDB), which can be divided into:

• Incremental mining,
• Data squashing,
• Reliable sampling.

The algorithm DIGNET [419, 440] (compare with “the leader” clustering
algorithm in [224]) is an example of incremental unsupervised learning. That
is, DIGNET handles one data point at a time, and then discards it. DIGNET
uses k-means cluster representation without iterative optimization. Centroids
are instead pushed or pulled depending on whether they lose or win each
next coming point. Such online clustering needs only one pass over the data,
but strongly depends on data ordering, and can result in poor-quality clusters.
However, it handles outliers, clusters can be dynamically created or discarded,
and the training process is resumable. This makes DIGNET appealing for
dynamic VLDB. The clusters resulting from DIGNET may serve as initial
guesses for other algorithms.

Data squashing techniques scan data to compute certain data summaries
(sufficient statistics) [146]. The summaries are then used instead of the origi-
nal data for clustering. Here the most important role belongs to the algorithm
BIRCH (Balanced Iterative Reduction and Clustering using Hierarchies) de-
veloped by Zhang et al. [459,460]. BIRCH has had a significant impact on the
overall direction of scalability research in clustering. BIRCH creates a height-
balanced tree of nodes that summarizes data by accumulating its zero, first,
and second moments. A node, called Cluster Feature (CF), is a small, tight
cluster of numerical data. The aforementioned tree resides in main memory. A
new data point descends along the tree to the closest CF leaf. If it fits the leaf
well, and if the leaf is not overcrowded, CF statistics are incremented for all
nodes from the leaf to the root. Otherwise a new CF is constructed. Because
the maximum number of children per node (branching factor) is limited, one
or several splits can happen. When the tree reaches the assigned memory size,
it is rebuilt and a threshold controlling whether a new point is assigned to
an existing leaf or starts a new leaf is updated to a coarser one. The outliers
are saved to a file and refitted gradually during the tree rebuilds. The final
leaves constitute input to any algorithm of choice. The fact that a CF tree is
balanced allows for log-efficient search.

BIRCH depends on parameters that control CF tree construction (branch-
ing factor, maximum of points per leaf, leaf threshold) and also on data
ordering. When the tree is constructed (one data pass), it can be addition-
ally condensed in the optional second phase to further fit the desired input
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cardinality of a postprocessing clustering algorithm. Next, in the third phase
a global clustering of CF (considered as individual points) happens. Finally,
certain irregularities (for example, identical points being assigned to different
CFs) can be resolved in an optional fourth phase. This fourth phase makes one
or more passes through data reassigning points to the best possible clusters,
as k-means does. The overall complexity of BIRCH is O(N). BIRCH has been
extended to handle mixed numerical and categorical attributes [111].

According to Bradley et al. [85], a full interface between VLDB and reloca-
tion clustering (e.g., k-means) has the following requirements. The algorithm
must:

• Make one full scan of the data, or less in case of early termination,
• Provide online intermediate solutions,
• Be suspendable, stoppable, and resumable,
• Be able to incorporate additional data incrementally,
• Be able to work in a prescribed amount of memory,
• Utilize different scanning modes (sequential, index, sample),
• Be able to operate in forward-only cursor over a view of database.

The authors suggest data compression that accumulates sufficient statistics
like BIRCH does, but makes it in phases. Points that are compressed over the
primary stage are discarded. They can be attributed to their clusters with
very high confidence even if other points would shift. The rest is taken care
of in the secondary phase, which tries to find dense subsets by the k-means
method with higher than requested k. Violators of this stage are still kept in
the retained set (RT) of singletons to be analyzed later.

BIRCH-like preprocessing relies on vector-space operations. In many ap-
plications, objects (for example, strings) belong to a metric space. In other
words, all we can do with data points is compute distances between them.
Ganti et al. [182] proposed a BIRCH-type data squashing technique called
BUBBLE that works with VLDB in metric spaces. Each leaf of the BUBBLE-
tree is characterized by: (1) its number of points, (2) its medoid (or clustroid),
i.e., that point with the least squared distance between it and all other points
belonging to the leaf, and (3) its radius, which is the average distance between
the medoid and the other leaf points.

The problem is how to insert new points in the absence of a vector struc-
ture. BUBBLE uses a heuristic that relates to a distance preserving embedding
of leaf points into a low-dimensional Euclidean vector space. Such embedding
is known as an isometric map in geometry and as a multidimensional scaling
in statistics. An analogy can also be made with embeddings used in support
vector machines. While Euclidean distance (used in BIRCH) is cheap, the com-
putation of a distance in an arbitrary metric space (for example, edit distance
for strings) can be expensive. Meanwhile, every insertion requires calculating
distances to all the nodes descending to a leaf. The sequel algorithm BUBBLE-
FM handles this difficulty. BUBBLE-FM reduces the computation by using
approximate isometric embedding, using the algorithm FastMap [158].
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In the context of hierarchical density-based clustering in VLDB, Breunig
et al. [89] analyzed data reduction techniques such as sampling and BIRCH
summarization and noticed that they result in deterioration of cluster quality.
To cure this, they approached data reduction through accumulation of data
bubbles that are summaries of local information about distances and nearest
neighbors. A data bubble contains an extent (the distance from a bubble’s
representative to most points in X), and the array of distances to each of its
MinPts nearest neighbors. Data bubbles are then used in conjunction with
the algorithm OPTICS (see Sect. 4.1).

Grid methods also generate data summaries, though their summarization
phase relates to units and segments and not to CFs. Therefore, they are
scalable.

Many algorithms use old-fashioned sampling with or without rigorous sta-
tistical reasoning. Sampling is especially handy for different initializations as
in CLARANS (Sect. 3.2), fractal clustering (Sect. 5), or k-means [84]. Note
that when clusters are constructed using any sample, assigning the whole
data set to the most appropriate clusters adds at least the term O(N) to the
overall complexity.

Sampling has received new life with the adoption by the data mining com-
munity of a special uniform test to control its adequacy. This test is based
on Hoeffding or Chernoff bounds [344] and states that, independent of the
distribution of a real-valued random variable Y, 0 ≤ Y ≤ R, the average of n
independent observations lies within ε of the actual mean,∣∣∣∣∣∣Ȳ − 1

n

∑
j=1:n

Yj

∣∣∣∣∣∣ ≤ ε

with probability 1 − δ as soon as,

ε =
√

R2 ln(1/δ)/2n.

These bounds are used in the clustering algorithm CURE [207] and in the
development of scalable decision trees in predictive mining [236]. In the con-
text of balanced clustering, a statistical estimation of sample size is provided
in [44]. Due to their nonparametric nature, the bounds are useful in a variety
of applications.

9 Clustering High-Dimensional Data

The objects in data mining can have hundreds of attributes. Clustering in such
high-dimensional spaces presents tremendous difficulty, much more so than in
predictive learning. For example, a decision tree simply skips an irrelevant
attribute in node splitting. Such attributes do not significantly affect Näıve
Bayes either. In clustering, however, high dimensionality presents a dual prob-
lem. First, under whatever definition of similarity, the presence of irrelevant
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attributes eliminates any hope on clustering tendency. After all, searching for
clusters where there are no clusters is a hopeless enterprise. While this could
also happen with low-dimensional data, the likelihood of the presence and
number of irrelevant attributes grows with dimension.

The second problem is the dimensionality curse, which is a loose way of
speaking about a lack of data separation in a high-dimensional space. Mathe-
matically, the nearest neighbor query becomes unstable, in that the distance
to the nearest neighbor becomes indistinguishable from the distance to the
majority of points [68]. This effect starts to be severe for dimensions greater
than 15. Therefore, construction of clusters founded on the concept of prox-
imity is doubtful in such situations. For interesting insights into complications
of high-dimensional data, see [10].

In Sect. 9.1 we talk briefly about traditional methods of dimensionality
reduction. In Sect. 9.2 we review algorithms that try to circumvent high di-
mensionality by building clusters in appropriate subspaces of the original at-
tribute space. Such an approach makes perfect sense in applications, because
it is better if we can describe data with fewer attributes. Still another ap-
proach that divides attributes into similar groups and comes up with good
new derived attributes representing each group is discussed in Sect. 9.3.

9.1 Dimensionality Reduction

When talking about high dimensionality, how high is high? Many clustering
algorithms depend on indices in spatial datasets to facilitate quick search
of the nearest neighbors. Therefore, indices can serve as good proxies with
respect to the performance impact of the dimensionality curse. Indices used
in clustering algorithms are known to work effectively for dimensions below
16. For a dimension d > 20 their performance degrades gradually to the level
of sequential search (though newer indices achieve significantly higher limits).
Therefore, we can arguably claim that data with more than 16 attributes are
high dimensional.

How large is the gap between a nonhigh dimension and a dimension in
real-life applications? If we are dealing with a retail application, for example,
52-week sales volumes (52 attributes) represent a typical set of features, which
is a special instance of the more general class of time series data. In customer
profiling, dozens of item categories plus basic demographics result in at the
least 50–100 attributes. Web clustering based on site contents results in 1,000–
5,000 attributes (pages/contents) for modest Web sites. Biology and genomic
data easily surpass 10,000 attributes. Finally, text mining and information
retrieval routinely deal with many thousands of attributes (words or index
terms). So, the gap is significant. Two general purpose techniques are used
to combat high dimensionality: (1) attribute transformation and (2) domain
decomposition.
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Attribute transformations are simple functions of existing attributes. One
example is a sum or an average roll-up for sales profiles or any OLAP-type
data (e.g., monthly volumes). Because of the fine seasonality of sales such
brute force approaches rarely work. In multivariate statistics, principal com-
ponent analysis (PCA) is popular [251,326], but this approach is problematic
due to poor interpretability. The singular value decomposition (SVD) tech-
nique is used to reduce dimensionality in information retrieval [60, 61] and
statistics [180]. Low-frequency Fourier harmonics in conjunction with Parse-
val’s theorem are successfully used in analysis of time series [14], as well as
wavelets and other transformations [267].

Domain decomposition divides the data into subsets, canopies [329], using
some inexpensive similarity measure, so that the high-dimensional computa-
tion happens over smaller datasets. The dimension stays the same, but the
cost of computation is reduced. This approach targets the situation of high
dimension, large data sets, and many clusters.

9.2 Subspace Clustering

Some algorithms adapt to high dimensions more easily than others. For exam-
ple, the algorithm CACTUS (Sect. 6) adjusts well because it defines a cluster
only in terms of a cluster’s two-dimensional projections. In this section we
cover techniques that are specifically designed to work with high dimensional
data.

The algorithm CLIQUE (Clustering In QUEst) invented by Agrawal et al.
[15] is fundamental for high-dimensional numerical data. CLIQUE combines
the ideas of:

• Density and grid-based clustering,
• Induction through dimension similar to the Apriori algorithm,
• MDL principle to select appropriate subspaces,
• Interpretability of clusters in terms of DNF representation.

CLIQUE starts with the definition of a unit, an elementary rectangular cell
in a subspace. Only units whose densities exceed a threshold τ are retained. A
bottom-up approach of finding such units is applied. First, 1s units are found
by dividing intervals into a grid of ξ equal-width bins. Both parameters τ
and ξ are inputs to the algorithm. The recursive step from q − 1-dimensional
units to q-dimensional units involves a self-join of the q − 1 units sharing
first common q − 2 dimensions (Apriori reasoning in association rules). All
the subspaces are sorted by their coverage and lesser-covered subspaces are
pruned. A cut point between retained and pruned subspaces is selected based
on the MDL principle. A cluster is defined as a maximal set of connected
dense units and is represented by a DNF expression that specifies a finite
set of maximal segments (called regions) whose union is the cluster. Effec-
tively, CLIQUE performs attribute selection (it selects several subspaces) and
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produces a view of data from different perspectives. The result is a series of
cluster systems in different subspaces. Such systems overlap. Thus, CLIQUE
produces a description of the data rather than a partitioning. If q is the high-
est subspace dimension selected, the complexity of dense unit generations is
O (constq + qN). Finding clusters is a task quadratic in terms of units.

The algorithm ENCLUS (ENtropy-based CLUStering) [108] follows the
footsteps of CLIQUE, but uses a different criterion for a subspace selection.
The criterion is derived from entropy-related considerations: the subspace
spanned by attributes A1, . . . , Aq with entropy H (A1, . . . , Aq) < ω (a thresh-
old) is considered good for clustering. Indeed, a low-entropy subspace cor-
responds to a skewed distribution of unit densities. Any subspace of a good
subspace is also good, since

H (A1, . . . , Aq−1) = H (A1, . . . , Aq) − H (Aq |A1, . . . , Aq−1 ) < ω.

The computational costs of ENCLUS are high.
The algorithm MAFIA (Merging of Adaptive Finite Intervals) [196, 347]

significantly modifies CLIQUE. MAFIA starts with one data pass to construct
adaptive grids in each dimension. Many (1,000) bins are used to compute his-
tograms by reading blocks of data into memory. The bins are then merged to
come up with a smaller number of adaptive variable-size bins than CLIQUE.
The algorithm uses a parameter α, called the cluster dominance factor, to
select bins that are α-times more densely populated than average. These
variable-size bins are q = 1 candidate dense units (CDUs). Then MAFIA pro-
ceeds recursively to higher dimensions (every time a data scan is involved).
Unlike CLIQUE, when constructing a new q-CDU, MAFIA tries two q − 1-
CDUs as soon as they share any (not only the first dimensions) q−2-face. This
creates an order of magnitude more candidates. Adjacent CDUs are merged
into clusters. Clusters that are proper subsets of other clusters are eliminated.
Fitting the parameter α presents no problem (in practice, the default value 1.5
works fine) in comparison with the global density threshold used in CLIQUE.
Reporting for a range of α in a single run is supported. If q is the highest
dimensionality of CDU, the algorithm’s complexity is O (constq + qN).

The algorithm OPTIGRID [230] partitions data based on divisive recursion
by multidimensional grids. The authors present a very good introduction to
the effects of high-dimension geometry. Familiar concepts, such as uniform
distribution, become blurred for large d. OPTIGRID uses density estimations
in the same way as the algorithm DENCLUE [229]. OPTIGRID focuses on
separation of clusters by hyperplanes that are not necessarily axes parallel. To
find such planes consider a set of contracting linear projectors (functionals)
P1, . . . , Pk, ‖Pj‖ ≤ 1 of the attribute space A at a one-dimensional line. For a
density kernel of the form K(x−y) utilized in DENCLUE and for a contracting
projection, the density induced after projection is more concentrated. Each
cutting plane is chosen so that it goes through the point of minimal density
and discriminates two significantly dense half-spaces. Several cutting planes
are chosen, and recursion continues with each subset of data.
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The algorithm PROCLUS (PROjected CLUstering) [12] explores pairs
consisting of a data subset C ⊂ X and a subspace in an attribute space
A. A subset–subspace pair is called a projected cluster, if a projection of C
onto the corresponding subspace is a tight cluster. The number k of clusters
and the average subspace dimension l are user inputs. The iterative phase of
the algorithm deals with finding k good medoids, each associated with its sub-
space. A sample of data is used in a greedy hill-climbing technique. Manhattan
distance divided by the subspace dimension is suggested as a useful normal-
ized metric for searching among different dimensions. After the iterative stage
is completed, an additional data pass is performed to refine clusters.

The algorithm ORCLUS (ORiented projected CLUSter generation) [13]
uses a similar approach of projected clustering, but employs nonaxes paral-
lel subspaces in high-dimensional space. In fact, both developments address
a more generic issue: even in a low-dimensional space, different portions of
data could exhibit clustering tendency in different subspaces (consider several
nonparallel nonintersecting cylinders in three-dimensional space). If this is the
case, any attribute selection is doomed. ORCLUS has a k-means like trans-
parent model that defines a cluster as a set of points (i.e., a partition) that has
low sum-of-squares of errors (energy) in a certain subspace. More specifically,
for x ∈ C, and directions E = {e1, . . . , el} (specific to C), the projection is
defined as

{
xT · e1, ..., x

T · el

}
. The projection only decreases energy. SVD di-

agonalization can be used to find the directions (eigenvectors) corresponding
to the lowest l eigenvalues of the covariance matrix. In reality, the algorithm
results in X partitioning (the outliers excluded) into k clusters Cj together
with their subspace directions Ej . The algorithm builds more than k clus-
ters, with larger than l-dimensional E gradually fitting the optimal subspace
and requested k. A suggestion for picking a good parameter l is based on
experience with synthetic data.

Leaving any other comparisons aside, projected clusters provide data par-
titioning, while cluster systems constructed by CLIQUE overlap.

9.3 Coclustering

In OLAP attribute roll-ups can be viewed as representatives of the attribute
groups. The interesting general idea of producing attribute groups in conjunc-
tion with clustering of points leads to the concept of coclustering. Coclustering
is the simultaneous clustering of both points and their attributes. This ap-
proach partially reverses the struggle: to improve clustering of points based
on their attributes, it tries to cluster attributes based on the points. So far
we were concerned with grouping only rows of a matrix X. Now we intend to
group its columns as well. This utilizes a canonical duality contained in the
point-by-attribute data representation.

The idea of coclustering of data points and attributes is old [21, 224] and
is known under the names simultaneous clustering, bi-dimensional clustering,
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block clustering, conjugate clustering, distributional clustering, and informa-
tion bottleneck method. The use of duality for analysis of categorical data
(dual or multidimensional scaling) also has a long history in statistics [351].
A similar idea of grouping items is also presented in Sect. 6. In this section
we turn to numerical attributes. Assume that the matrix X has non-negative
elements. Such matrices appear as incidence, relational, frequency, or contin-
gency matrices. In applications it can reflect the intensity of a gene response in
a tissue sample, the frequency of Web page visitation activity, or sales volume
per store per category.

Govaert [203] researched simultaneous block clustering of the rows and
columns of contingency tables. He also reviewed an earlier work on the subject.
An advanced algebraic approach to coclustering based on bipartite graphs and
their minimal cuts in conjunction with text mining was developed in [128].
This paper contains an excellent introduction to the relationships between
simultaneous clustering, graph partitioning and SVD. A simple algorithm
Ping-Pong [354] was suggested to find populated areas in a sparse binary
matrix. Ping-Pong redistributes influence of columns on rows and vice versa
by transversal connection through matrix elements (compare with algorithm
STIRR mentioned earlier).

A series of publications deal with distributional clustering of attributes
based on the informational measures of attribute similarity. Two attributes
(two columns in matrix X) with exactly the same probability distributions are
identical for the purpose of data mining, and so, one can be deleted. Attributes
that have probability distributions that are close in terms of their Kullback–
Leibler (KL) distance [298] can still be grouped together without much impact
on information contained in the data. In addition, a natural derived attribute,
the mixed distribution (a normalized sum of two columns), is now available to
represent the group. This process can be generalized. The grouping simplifies
the original matrix X into the compressed form X̄. Attribute clustering is
productive when it minimizes information reduction R = I(X)− I(X̄), where
I(X) is mutual information contained in X [115]. Such attribute grouping is
intimately related to Näıve Bayes classification in predictive mining [41].

The attribute-grouping technique just described is quite relevant to group-
ing words in text mining. In this context the technique was explored under
the name Information Bottleneck method [421], and was used to facilitate
agglomerative co-clustering of words in document clustering [400] and classi-
fication [401].

Berkhin and Becher [58] showed the deep algebraic connection between
distributional clustering and k-means. They used k-means adaptation to KL-
distance as a major iterative step in the algorithm SimplifyRelation that
gradually coclusters points and attributes. This development has industrial
application in Web analysis. Figure 6 shows how an original incidence ma-
trix of Web site traffic between 197 referrers (rows) and 203 Web site pages
(columns) is clustered into a 26 × 22 matrix with only 6% information loss.
While KL distance is not actually a distance, because it is not symmetric,
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Fig. 6. Algorithm Learning Relation

it can be symmetrized to the Jensen–Shannon divergence. Dhillon et al. [137]
used Jensen–Shannon divergence to cluster words in k-means fashion in text
classification. Besides text and Web mining, the idea of coclustering finds its
way into other applications, as for example, clustering of gene microarrays [93].

10 General Algorithmic Issues

Clustering algorithms share some important common issues that need to be
addressed to make them successful. Some issues are so ubiquitous that they
are not even specific to unsupervised learning and can be considered as a
part of an overall data mining framework. Other issues are resolved in certain
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algorithms we presented. In fact, many algorithms were specifically designed
to address some of these issues:

• Assessment of results,
• Choice of appropriate number of clusters,
• Data preparation,
• Proximity measures,
• Handling outliers.

10.1 Assessment of Results

The data mining clustering process starts with the assessment of whether
any cluster tendency can be established in data, and correspondingly includes
some attribute selection, and in many cases, feature construction. Assessment
finishes with the validation and evaluation of the resulting clustering sys-
tem. Clusters can be assessed by an expert, or by a particular automated
procedure. Traditionally, the first type of assessment relates to two issues:
(1) cluster interpretability, (2) cluster visualization. Interpretability depends
on the technique used. Model-based probabilistic and conceptual algorithms,
such as COBWEB, have better scores in this regard. k-Means and k-medoid
methods generate clusters that are interpreted as dense areas around centroids
or medoids and, therefore, also score well. Jain et al. [245] cover cluster vali-
dation thoroughly. A discussion of cluster visualization and related references
can be found in [254].

Regarding automatic procedures, when two partitions are constructed
(with the same or different number of subsets k), the first order of busi-
ness is to compare them. Sometimes the actual class label of one partition
is known. The situation is similar to testing a classifier in predictive mining
when the actual target is known. Comparison of s and j labels is similar to
computing an error, confusion matrix, etc. in predictive mining. Simple Rand
criterion serves this purpose [366]. Computation of a Rand index (defined
below) involves pairs of points that were assigned to the same and to differ-
ent clusters in each of two partitions. Hence it has O

(
N2

)
complexity and is

not always feasible. Conditional entropy of a known label s given clustering
partitioning [115],

H(S |J ) = −
∑

j

pj

∑
s

ps|j log
(
ps|j

)
,

is another measure used. Here pj , ps|j are probabilities of j cluster, and condi-
tional probabilities of s given j. It has O (N) complexity. Other measures are
also used, for example, the F -measure [303]. Meila [334] explores comparing
clusters in detail.
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10.2 How Many Clusters?

In many methods, the number k of clusters to construct is an input parameter.
Larger k results in more granular and less-separated clusters. In the case of
k-means, the objective function is monotone decreasing. Therefore, the ques-
tion of how to choose k is not trivial.

Many criteria have been introduced to find an optimal k. Some industrial
applications (e.g., SAS) report a pseudo F -statistics. This only makes sense
for k-means clustering in the context of ANOVA. Earlier publications on the
subject analyzed cluster separation for different k [147,336]. For instance, the
distance between any two centroids (medoids) normalized by the correspond-
ing cluster’s radii (standard deviations) and averaged (with cluster weights) is
a reasonable choice for the coefficient of separation. This coefficient has very
low complexity. Another popular choice for a separation measure is the Silhou-
ette coefficient [265] having O

(
N2

)
complexity, which is used in conjunction

with CLARANS in [349]. Consider the average distance between point x of
cluster C and other points within C and compare it with the corresponding
average distance of the best fitting cluster G other than C

a(x) =
1

|C| − 1

∑
y∈C,y �=x

d(x, y), b(x) = minG �=C
1
|G|

∑
y∈G

d(x, y).

The Silhouette coefficient of x is s(x) = (b(x) − a(x))/max {a(x), b(x)}, with
values close to +1 corresponding to a good clustering choice and values below
0 to a bad clustering choice. The overall average of individual s(x) gives a
good indication of cluster system appropriateness.

Remember that assignment of a point to a particular cluster may often
involves a certain arbitrariness. Depending on how well a point fits a cluster
C, different probabilities or weights w(x,C) can be introduced so that a hard
(strict) assignment is defined as

C(x) = argminCw(x,C).

A Partition coefficient [69] having O (kN) complexity is equal to the sum of
squares of the weights

W =
1
N

∑
x∈X

w (x,C(x))2

(compare with GINI index). Each of the discussed measures can be plotted
as a function of k and the graph can be inspected to help choose the best k.

A strong probabilistic foundation of the mixture model, discussed in
Sect. 3.1, allows viewing a choice of optimal k as a problem of fitting the data
by the best model. The question is whether adding new parameters results
in a better model. In Bayesian learning (for example, AUTOCLASS [105])
the likelihood of the model is directly affected (through priors) by the model
complexity (i.e., the number of parameters proportional to k). Several criteria
were suggested including:



A Survey of Clustering Data Mining Techniques 67

• Minimum description length (MDL) criterion [370,371,390];
• Minimum message length (MML) criterion [435,436];
• Bayesian information criterion (BIC) [171,390];
• Akaike’s information criterion (AIC) [82];
• Noncoding information theoretic criterion (ICOMP) [83];
• Approximate weight of evidence (AWE) criterion [48];
• Bayes factors [264].

All these criteria are expressed through combinations of log-likelihood L, num-
ber of clusters k, number of parameters per cluster, total number of estimated
parameters p, and different flavors of Fisher information matrix. For example,

MDL(k) = −L + p/2 − log(p), kbest = argminkMDL(k),

BIC(k) = L − p

2
· log(n), kbest = argmaxkBIC(k).

Further details and discussion can be found in [73, 171, 352]. Here are a few
examples of criteria usage: MCLUST and X-means use the BIC criterion,
SNOB uses the MML criterion, while CLIQUE and the evolutionary approach
to k determination [305] use MDL. Significant expertise has been developed in
estimating goodness of fit based on the criteria above. For example, different
ranges of BIC are suggested for weak, positive, and very strong evidence in
favor of one clustering system versus another in [172]. Smyth [402] suggested
a likelihood crossvalidation technique for determining the best k.

10.3 Data Preparation

Irrelevant attributes make chances of a successful clustering futile, because
they negatively affect proximity measures and eliminate clustering tendency.
Therefore, sound exploratory data analysis (EDA) is essential. An overall
framework for EDA can be found in [50]. As its first order of business, EDA
eliminates inappropriate attributes and reduces the cardinality of the retained
categorical attributes. Next it provides attribute selection. Different attribute
selection methods exist. Inconsistency rates are utilized in [321]. The idea of a
Markov blanket is used in [291]. While there are other methods (for example,
[248]), most are used primarily for predictive and not descriptive mining and
thus do not address general-purpose attribute selection for clustering. We
conclude that cluster-specific attribute selection has yet to be invented.

Attribute transformation has already been discussed in the context of
dimensionality reduction. The practice of assigning different weights to at-
tributes and/or scaling of their values (especially, standardization) is wide-
spread and allows constructing clusters of better shapes. To some extent at-
tribute scaling can be viewed as the continuation of attribute selection.

In real-life applications it is crucial to handle attributes of different types.
For example, images are characterized by color, texture, shape, and location,
resulting in four attribute subsets. Modha and Spangler [341] suggested a
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very interesting approach for attribute scaling that pursues the objective of
clustering in each attribute subset by computing weights (a simplex) that
minimize the product of intracluster to intercluster ratios for the attribute
subset projections (called the generalized Fisher ratio).

In many applications data points have different significance. For example,
in assortment planning, stores can be characterized by the profiles of the
percentage sales of particular items. However, the overall sale volume gives
an additional weight to larger stores. Partitioning relocation and grid-based
algorithms easily handle weighted data (centroids become centers of weights
instead of means). This practice is called case scaling.

Some algorithms, for example, the extension of the algorithm CLARANS
[153] and the algorithm DBSCAN [152], depend on the effectiveness of data
access. To facilitate this process data indices are constructed. Index structures
used for spatial data include KD-trees [177], R-trees [211], and R∗-trees
[293]. A blend of attribute transformations (DFT, Polynomials) and indexing
techniques is presented in [268]. Other indices and numerous generalizations
exist [51,57,157,259,269,438]. The major application of such data structures
is the nearest neighbor search.

One way to preprocess multimedia data is to embed it into Euclidean
space. In this regard see the algorithm FastMap [158].

A fairly diverse range of preprocessing is used for variable length sequences.
Instead of handling them directly (as discussed in the Sect. 3.1), a fixed set of
features representing the variable length sequences can be derived [210,324].

10.4 Proximity Measures

Different distances and similarity measures are used in clustering [242]. The
usual Lp distance

d(x, y) = ‖x − y‖ , ‖z‖p =

⎛
⎝∑

j=1:d

|zj |p
⎞
⎠1/p

, ‖z‖ = ‖z‖2

is used for numerical data, 1 ≤ p < ∞; lower p corresponds to a more robust
estimation (therefore, less affected by outliers). Euclidean (p = 2) distance is
by far the most popular choice used in k-means objective functions (the sum of
squares of distances between points and centroids) that has a clear statistical
meaning as the total intercluster variance. Manhattan distance corresponds
to p = 1. The distance that returns the maximum of absolute difference in
coordinates is also used and corresponds to p = ∞. In many applications (e.g.,
profile analyses) points are scaled to have a unit norm, so that the proximity
measure is an angle between the points,

d(x, y) = arccos
(
xT · y/ ‖x‖ · ‖y‖) .

This measure is used in specific tools, such as DIGNET [419], and in particular
applications such as text mining [132]. All above distances assume attribute
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independence (diagonal covariance matrix S). The Mahanalabonis distance
[326]

d(x, y) =
√

(x − y)T TS(x − y)

is used in algorithms such as ORCLUS [13] that do not make this assumption.
Formula s(x, y) = 1/ (1 + d(x, y)) defines similarity for whatever distance.

For numerical attributes other choices include the Cosine, and Dice coeffi-
cients and distance Eponent

scos = xT·y/ ‖x‖·‖y‖ , sDice = 2xT·y/ (‖x‖ + ‖y‖) , sexp = exp (−‖x − y‖α) .

Now we shift our attention to categorical data. A number of similarity mea-
sures exist for categorical attributes [142, 155]. Assuming binary attributes
with values α, β = ±, let dαβ be a number of attributes having outcomes α in
x and β in y. Then the Rand and Jaccard (also known as Tanimoto) indices
are defined as

R(x, y) = (d++ + d−−) / (d++ + d+− + d−+ + d−−) ,

J(x, y) = d++/ (d++ + d+− + d−+) .

Notice that the Jaccard index treats positive and negative values asymmet-
rically, which makes it the measure of choice for transactional data, with a
positive value meaning that an item is present. The Jaccard index is simply
the fraction of common items of two transactions relative to the number of
items in both transactions. It is also used in collaborative filtering, sequence
analysis, text mining, and pattern recognition. The Extended Jaccard coeffi-
cient is advocated in [188]. For construction of similarity measures for market
basket analysis see [11, 38]. Similarity can also be constructed axiomatically
based on information-theoretical considerations [38, 316]. The last two refer-
ences also contain material related to string similarity, where biology is one
application. For strings over the same alphabet, edit distance is frequently
used [25]. Edit distance is based on the length of a sequence of transforma-
tions (such as insertion, deletion, transposition, etc.) that are necessary to
transform one string into another. A classic Hamming distance [115] is also
used. Further references can be found in a review [245]. Historically, textual
mining was a source of major inspirations for the concept of similarity [369].

10.5 Handling Outliers

Applications that derive their data from measurements have an associated
amount of noise, which can be viewed as outliers. Alternately, outliers can be
viewed as legitimate records having abnormal behavior. In general, clustering
techniques do not distinguish between the two; neither noise nor abnormalities
fit into clusters. Correspondingly, the preferred way to deal with outliers in
partitioning the data is to keep outliers separate, and thereby avoid polluting
actual clusters.
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Descriptive learning handles outliers in many ways. If a summarization
or a data preprocessing phase is present, it usually takes care of outliers.
For example, this is the case with grid-based methods, which rely on input
thresholds to eliminate low-populated cells. Algorithms described in Sect. 8
provide further examples. The algorithm BIRCH [459, 460] revisits outliers
during the major CF tree rebuilds, but in general it handles them separately.
This approach is shared by similar systems [111]. Framework suggested by
Bradley et al. in [85] utilizes a multiphase approach to handle outliers.

Certain algorithms have specific features for outlier handling. The algo-
rithm CURE [207] uses shrinkage of a cluster’s representives to suppress the
effects of outliers. K-medoids methods are generally more robust than k-
means methods with respect to outliers: medoids do not “feel” outliers (me-
dian vs. average). The algorithm DBCSAN [152] uses the concepts of internal
(core), boundary (reachable), and outlier (nonreachable) points. The algo-
rithm CLIQUE [15] goes a step further by eliminating subspaces with low
coverage. The algorithm WaveCluster [394] is known to handle outliers very
well because of its DSP roots. The algorithm ORCLUS [13] produces a parti-
tion plus a set of outliers.

What precisely is an outlier? Statistics defines an outlier as a point that
does not fit a probability distribution. Classic data analysis utilizes a concept
of depth [424] and defines an outlier as a point of low depth. This concept
becomes computationally infeasible for d > 3. Data mining is gradually de-
veloping its own definitions.

Consider two positive parameters ε, δ. A point can be declared an outlier
if its ε-neighborhood contains less than 1 − δ fraction of a whole dataset
X [273]. Ramaswamy et al. [365] noticed that this definition can be improved
by eliminating the parameter ε. Rank all the points by their distance to the
kth nearest neighbor and define the δ fraction of points with highest ranks
as outliers. Both these definitions are uniformly global, so the question of
how to describe local outliers remains. In essence, different subsets of data
have different densities and may be governed by different distributions. A
point close to a tight cluster might be more likely to be an outlier than a
point that is further away from a more dispersed cluster. A concept of local
outlier factor (LOF) that specifies a degree of outlierness is developed in [90].
The definition is based on the distance to the kth nearest neighbor. Knorr
et al. [274] addressed a related problem of how to eliminate outliers in order
to compute an appropriate covariance matrix that describes a given locality.
To do so, they utilized the Donoho–Stahel estimator in two-dimensional space.

Crude handling of outliers works surprisingly well in many applications, be-
cause many applications are concerned with systematic patterns. An example
is customer segmentation with the objective of finding a segment for a direct
mail campaign. On the other hand, philosophically an outlier is an atypical
leftover after regular clustering and, as such, it might have its own significance.
Therefore, in addition to eliminating negative effects of outliers on cluster con-
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struction, there is a separate factor driving the interest in outlier detection,
namely, that in some applications, the outlier is the commodity of trade. This
is so in medical diagnostics, fraud detection, network security, anomaly de-
tection, and computer immunology. Some connections and further references
can be found in [167, 186, 307]. In CRM, E-commerce, and web site analytics
outliers relate to the concepts of interesting and unexpected [355,356,360,397].
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Similarity-Based Text Clustering: A
Comparative Study

J. Ghosh and A. Strehl

Summary. Clustering of text documents enables unsupervised categorization and
facilitates browsing and search. Any clustering method has to embed the objects
to be clustered in a suitable representational space that provides a measure of
(dis)similarity between any pair of objects. While several clustering methods and
the associated similarity measures have been proposed in the past for text clus-
tering, there is no systematic comparative study of the impact of similarity mea-
sures on the quality of document clusters, possibly because most popular cost
criteria for evaluating cluster quality do not readily translate across qualitatively
different measures. This chapter compares popular similarity measures (Euclidean,
cosine, Pearson correlation, extended Jaccard) in conjunction with several clustering
techniques (random, self-organizing feature map, hypergraph partitioning, general-
ized k-means, weighted graph partitioning), on a variety of high dimension sparse
vector data sets representing text documents as bags of words. Performance is
measured based on mutual information with a human-imposed classification. Our
key findings are that in the quasiorthogonal space of word frequencies: (i) Cosine,
correlation, and extended Jaccard similarities perform comparably; (ii) Euclidean
distances do not work well; (iii) Graph partitioning tends to be superior espe-
cially when balanced clusters are desired; (iv) Performance curves generally do
not cross.

1 Introduction

Document clusters can provide a structure for organizing large bodies of text
for efficient browsing and searching. For example, recent advances in Internet
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search engines (e.g., www.vivisimo.com, www.metacrawler.com) exploit docu-
ment cluster analysis. For this purpose, a document is commonly represented
as a vector consisting of the suitably normalized frequency counts of words
or terms. Each document typically contains only a small percentage of all the
words ever used. If we consider each document as a multidimensional vector
and then try to cluster documents based on their word contents, the problem
differs from classic clustering scenarios in several ways: Document data are
high dimensional1, characterized by a very sparse term-document matrix with
positive ordinal attribute values and a significant amount of outliers. In such
situations, one is truly faced with the “curse of dimensionality” issue [176]
since even after feature reduction, one is left with hundreds of dimensions per
document.

Since clustering basically involves grouping objects based on their inter-
relationships or similarities, one can alternatively work in similarity space
instead of the original feature space. The key insight is that if one can find a
similarity measure (derived from the object features) that is appropriate for
the problem domain, then a single number can capture the essential “close-
ness” of a given pair of objects, and any further analysis can be based only on
these numbers. Once this is done, the original high-dimensional space is not
dealt with at all; we only work in the transformed similarity space, and sub-
sequent processing is independent of the dimensionality of the data [412].
A similar approach can be found in kernel based methods, such as Sup-
port Vector Machines (SVMs), for classification problems since the kernel
function indicates a similarity measure obtained by a generalized inner prod-
uct [240,249,430]. It is interesting to note that some very early works on clus-
tering (e.g., [233]) were based on the concept of similarity, but subsequently
the focus moved toward working with distances in a suitable embedding space,
since typically, n, the number of objects considered, would be much larger than
the number of features, d, used to represent each object. With text, d is very
high; hence there is a renewal of interest in similarity-based approaches.

A typical pattern clustering activity involves the following five steps ac-
cording to [242]:

1. Suitable object representation,
2. Definition of proximity between objects,
3. Clustering,
4. Data abstraction,
5. Assessment of output

The choice of similarity or distance in step 2 can have a profound impact on
clustering quality. The significant amount of empirical studies in the 1980s
and earlier on document clustering largely selected either Euclidean distance
or cosine similarity, and emphasized various ways of representing/normalizing

1The dimension of a document in vector space representation is the size of the
vocabulary, often in the tens of thousands.
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documents before this step [377, 443]. Agglomerative clustering approaches
were dominant and compared favorably with flat partitional approaches on
small-sized or medium-sized collections [367, 443]. But lately, some new par-
titional methods have emerged (spherical k-means (KM), graph partitioning
(GP) based, etc.) that have attractive properties in terms of both quality and
scalability and can work with a wider range of similarity measures. In addi-
tion, much larger document collections are being generated.2 This warrants
an updated comparative study on text clustering, which is the motivation
behind this chapter. Some very recent, notable comparative studies on docu-
ment clustering [408, 463, 464] also consider some of these newer issues. Our
work is distinguished from these efforts mainly by its focus on the key role
of the similarity measures involved, emphasis on balancing, and the use of a
normalized mutual information based evaluation that we believe has superior
properties.

We mainly address steps 2 and 5 and also touch upon steps 3 and 4 in
the document clustering domain. We first compare similarity measures an-
alytically and illustrate their semantics geometrically (steps 2 and 4). Sec-
ond, we propose an experimental methodology to compare high-dimensional
clusterings based on mutual information and we argue why this is prefer-
able to the more commonly used purity-based or entropy-based measures
(step 5) [75,408,463]. Finally, we conduct a series of experiments to evaluate
the performance and the cluster quality of four similarity measures (Euclidean,
cosine, Pearson correlation, extended Jaccard) in combination with five algo-
rithms (random, self-organizing map (SOM), hypergraph partitioning (HGP),
generalized KM, weighted graph partitioning) (steps 2 and 3). Agglomerative
clustering algorithms have been deliberately ignored even though they have
been traditionally popular in the information retrieval community [367], but
are not suitable for very large collections due to their computational complex-
ity of at least O(n2 log n) [300]. Indeed, if a hierarchy of documents is required,
it is more practical to first partition the collection into an adequately large
number (say 100 if finally about ten groups are desired) clusters, and then
run an agglomerative algorithm on these partially summarized data.

Section 2 considers previous related work and Sect. 3 discusses various sim-
ilarity measures.

2 Background and Notation

Clustering has been widely studied in several disciplines, especially since the
early 1960s [59,224,243]. Some classic approaches include partitional methods
such as k-means, hierarchical agglomerative clustering, unsupervised Bayes,
and soft3 techniques, such as those based on fuzzy logic or statistical mechanics

2IBM Patent Server has over 20 million patents. Lexis-Nexis contains over 1 billion
documents

3In soft clustering, a record can belong to multiple clusters with different degrees of
“association” [299].
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[103]. Conceptual clustering [163], which maximizes category utility, a measure
of predictability improvement in attribute values given a clustering, is also
popular in the machine learning community. In most classical techniques, and
even in fairly recent ones proposed in the data mining community (CLARANS,
DBSCAN, BIRCH, CLIQUE, CURE, WAVECLUSTER, etc. [217, 368]) the
objects to be clustered only have numerical attributes and are represented by
low-dimensional feature vectors. The clustering algorithm is then based on
distances between the samples in the original vector space [382]. Thus these
techniques are faced with the “curse of dimensionality” and the associated
sparsity issues, when dealing with very high-dimensional data such as text.
Indeed, often, the performance of such clustering algorithms is demonstrated
only on illustrative two-dimensional examples.

Clustering algorithms may take an alternative view based on a notion of
similarity or dissimilarity. Similarity is often derived from the inner product
between vector representations, a popular way to quantify document simi-
larity. In [136], the authors present a spherical KM algorithm for document
clustering using this similarity measure. Graph-based clustering approaches,
which attempt to avoid the “curse of dimensionality” by transforming the
problem formulation into a similarity space, include [75, 411, 461]. Finally,
when only pairwise similarities are available, techniques such as Multi-
Dimensional Scaling (MDS) [422] have been used to embed such points into
a low-dimensional space such that the stress (relative difference between em-
bedded point distances and actual distances) is minimized. Clustering can
then be done in the embedding space. However, in document clustering this
is not commonly used since for acceptable stress levels the dimensionality of
the embedding space is too high.

Note that similarity-based methods take a discriminative approach to clus-
tering. An alternative would be to take a generative viewpoint, starting from
an underlying probabilistic model of the data and then finding suitable para-
meters typically through a maximum likelihood procedure. Cluster locations
and properties are then derived as a by-product of this procedure. A detailed
discussion of the pros and cons of discriminative approaches as compared to
generative ones is given in [187]. Often discriminative approaches give better
results, but any approach that required all-pairs similarity calculation is in-
herently at least O(N2) in both computational and storage requirements. In
contrast, model-based generative approaches can be linear in N . A detailed
empirical comparison of different model-based approaches to document clus-
tering is available in [464] and hence we do not revisit these models in this
chapter. Clustering has also been studied for the purpose of browsing. A two-
dimensional SOM [284] has been applied to produce a map of, e.g., Usenet
postings in WEBSOM [285]. The emphasis in WEBSOM is not to maximize
cluster quality but to produce a human interpretable two-dimensional spatial
map of known categories (e.g., newsgroups). In the Scatter/Gather approach
[120] document clustering is used for improved interactive browsing of large
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query results. The focus on this work is mostly on speed/scalability and not
necessary maximum cluster quality. In [451], the effectiveness of clustering for
organizing web documents was studied.

There is also substantial work on categorizing documents. Here, since at
least some of the documents have labels, a variety of supervised or semi-
supervised techniques can be used [342, 350]. A technique using the support
vector machine is discussed in [249]. There are several comparative studies on
document classification [447,448].

Dimensionality reduction for text classification/clustering has been studied
as well. Often, the data are projected onto a small number of dimensions cor-
responding to principal components or a scalable approximation thereof (e.g.,
Fastmap [156]). In latent semantic indexing (LSI) [124] the term-document
matrix is modeled by a rank-K approximation using the top K singular values.
While LSI was originally used for improved query processing in information
retrieval, the base idea can be employed for clustering as well.

In bag-of-words approaches the term-frequency matrix contains occurrence
counts of terms in documents. Often, the matrix is preprocessed in order to en-
hance discrimination between documents. There are many schemes for select-
ing term, and global, normalization components. One popular preprocessing
is normalized term frequency, inverse document frequency (TF-IDF), which
also comes in several variants [40,377]. However, this chapter does not discuss
the properties of feature extraction, see, e.g., [312, 459] instead. In [447, 448]
classification performance of several other preprocessing schemes is compared.

Following Occam’s Razor, we do not use any weighting but use the raw
frequency matrix of selected words for our comparison. Hence, appropriate
normalization has to be encoded by the similarity measure.

Let n be the number of objects (documents, samples) in the data and d
the number of features (words, terms) for each object xj with j ∈ {1, . . . , n}.
Let k be the desired number of clusters. The input data can be represented
by a d×n data matrix X with the jth column vector representing the sample
xj . xT

j denotes the transpose of xj . Hard clustering assigns a label λj to
each d-dimensional sample xj , such that similar samples tend to get the same
label. In general the labels are treated as nominals with no inherent order,
though in some cases, such as one-dimensional SOM or GP approaches based
on swapping of vertices with neighboring partitions the labeling contains extra
ordering information. Let C� denote the set of all objects in the �th cluster
(� ∈ {1, . . . , k}), with xj ∈ C� ⇔ λj = � and n� = |C�|. The number of distinct
labels is k, the desired number of clusters. We treat the labels as nominals with
no order, though in some cases, such as the SOM or graph partitioning, the
labeling may contain extra ordering information. Batch clustering proceeds
from a set of raw object descriptions X via the vector space description X to
the cluster labels λ (X → X → λ). Section 3 briefly describes the compared
similarity measures.
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3 Similarity Measures

In this section, we introduce several similarity measures, illustrate some of
their properties, and show why we are interested in some but not others. In
Sect. 4, the algorithms using these similarity measures are discussed.

3.1 Conversion from a Distance Metric

The Minkowski distances Lp(xa,xb) =
(∑d

i=1 |xi,a − xi,b|p
)1/p

are commonly
used when objects are represented in a vector space. For p = 2 we obtain the
Euclidean distance. There are several possibilities for converting such a dis-
tance metric (in [0, inf)) into a similarity measure (in [0, 1]; usually similarity
of 1 corresponds to a distance of 0) by a monotonic decreasing function. For
Euclidean space, a good choice is: similarity = exp(−(distance)2), as it relates
the squared error loss function to the negative log-likelihood for a Gaussian
model for each cluster. In this chapter, we use the Euclidean [0, 1]-normalized
similarity expressed by

s(E)(xa,xb) = e−‖xa−xb‖2
2 (1)

rather than alternatives such as s(xa,xb) = 1/(1 + ‖xa − xb‖2).

3.2 Cosine Measure

A popular measure of similarity for text clustering is the cosine of the angle
between two vectors. The cosine measure is given by

s(C)(xa,xb) =
xT

a xb

‖xa‖2 · ‖xb‖2
(2)

and captures a scale invariant understanding of similarity. The cosine simi-
larity does not depend on the length of the vectors, only their direction. This
allows documents with the same relative distribution of terms to be treated
identically. Being insensitive to the size of the documents makes this a very
popular measure for text documents. Also, due to this property, document vec-
tors can be normalized to the unit sphere for more efficient processing [136].

3.3 Pearson Correlation

In collaborative filtering, correlation is often used to predict a feature from a
highly similar mentor group of objects whose features are known. The [0, 1]
normalized Pearson correlation is defined as

s(P)(xa,xb) =
1
2

(
(xa − x̄a)T(xb − x̄b)

‖xa − x̄a‖2 · ‖xb − x̄b‖2
+ 1

)
, (3)
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where x̄ denotes the average feature values of x. Note that this definition of
Pearson correlation tends to give a full matrix. Other important correlations
have been proposed, such as Spearman correlation [406], which works well on
rank orders.

3.4 Extended Jaccard Similarity

The binary Jaccard coefficient4 measures the degree of overlap between two
sets and is computed as the ratio of the number of shared attributes (words) of
xa and xb to the number possessed by xa or xb. For example, given two sets’
binary indicator vectors xa = (0, 1, 1, 0)T and xb = (1, 1, 0, 0)T, the cardinality
of their intersect is 1 and the cardinality of their union is 3, rendering their
Jaccard coefficient 1/3. The binary Jaccard coefficient is often used in retail
market-basket applications. The binary definition of Jaccard coefficient can
be extended to continuous or discrete non-negative features as:

s(J)(xa,xb) =
xT

a xb

‖xa‖2
2 + ‖xb‖2

2 − xT
a xb

, (4)

which is equivalent to the binary version when the feature vector entries are
binary. Extended Jaccard similarity retains the sparsity property of the co-
sine while allowing discrimination of collinear vectors as we show in Sect. 3.6.
Another similarity measure highly related to the extended Jaccard is the Dice
coefficient

s(D)(xa,xb) =
2xT

a xb

‖xa‖2
2 + ‖xb‖2

2

.

The Dice coefficient can be obtained from the extended Jaccard coefficient by
adding xT

a xb to both the numerator and the denominator. It is omitted here
since it behaves very similar to the extended Jaccard coefficient.

3.5 Other (Dis-)Similarity Measures

Many other (dis-)similarity measures, such as shared nearest neighbor [247]
or the edit distance, are possible [243]. In fact, the ugly duckling theorem
states [442] the somewhat “unintuitive” fact that there is no way to distinguish
between two different classes of objects, when they are compared over all
possible features. As a consequence, any two arbitrary objects are equally
similar unless we use domain knowledge. The similarity measures discussed in
Sects. 3.1–3.4 are some of the popular ones that have been previously applied
to text documents [170,377].

4Also called the Tanimoto coefficient in the vision community.
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3.6 Discussion

Clearly, if clusters are to be meaningful, the similarity measure should be
invariant to transformations natural to the problem domain. Also, normal-
ization may strongly affect clustering in a positive or a negative way. The
features have to be chosen carefully to be on comparable scales and similarity
has to reflect the underlying semantics for the given task.

Euclidean similarity is translation invariant but scale sensitive while cosine
is translation sensitive but scale invariant. The extended Jaccard has aspects
of both properties as illustrated in Fig. 1. Iso-similarity lines at s = 0.25, 0.5,
and 0.75 for points x1 = (3, 1)T and x2 = (1, 2)T are shown for Euclidean,
cosine, and the extended Jaccard. For cosine similarity only the 4 (out of 12)
lines that are in the positive quadrant are plotted: The two lines in the lower
right part are one of two lines from x1 at 0.5 and 0.75. The two lines in the
upper left are for x2 at s = 0.5 and 0.75. The dashed line marks the locus
of equal similarity to x1 and x2, which always passes through the origin for
cosine and the extended Jaccard similarity.

Using Euclidean similarity s(E), isosimilarities are concentric hyperspheres
around the considered point. Due to the finite range of similarity, the radius
decreases hyperbolically as s(E) increases linearly. The radius does not depend
on the center point. The only location with similarity of 1 is the considered
point itself and all finite locations have a similarity greater than 0. This last
property tends to generate nonsparse similarity matrices. Using the cosine
measure s(C) renders the isosimilarities to be hypercones all having their apex
at the origin and the axis aligned with the considered point. Locations with
similarity 1 are on the one-dimensional subspace defined by this axis. The
locus of points with similarity 0 is the hyperplane through the origin and per-
pendicular to this axis. For the extended Jaccard similarity s(J), the isosim-
ilarities are nonconcentric hyperspheres. The only location with similarity 1
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Fig. 1. Properties of (a) Euclidean-based, (b) cosine, and (c) extended Jaccard
similarity measures illustrated in two dimensions. Two points (1, 2)T and (3, 1)T are
marked with ×. For each point isosimilarity surfaces for s = 0.25, 0.5, and 0.75 are
shown with solid lines. The surface that is equisimilar to the two points is marked
with a dashed line
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is the point itself. The hypersphere radius increases with the distance of the
considered point from the origin so that longer vectors turn out to be more
tolerant in terms of similarity than smaller vectors. Sphere radius also in-
creases with similarity, and as s(J) approaches 0 the radius becomes infinite,
rendering the sphere to the same hyperplane as obtained for cosine similarity.
Thus, for s(J) → 0, the extended Jaccard behaves like the cosine measure, and
for s(J) → 1, it behaves like the Euclidean distance.

In traditional Euclidean k-means clustering, the optimal cluster represen-
tative c� minimizes the sum of squared error criterion, i.e.,

c� = arg min
z∈F

∑
xj∈C�

‖xj − z‖2
2. (5)

In the following, we show how this convex distance-based objective can be
translated and extended to similarity space. Consider the generalized objective
function f(C�, z) given a cluster C� and a representative z:

f(C�, z) =
∑

xj∈C�

d(xj , z)2 =
∑

xj∈C�

‖xj − z‖2
2. (6)

We use the transformation from (1) to express the objective in terms of sim-
ilarity rather than distance:

f(C�, z) =
∑

xj∈C�

− log(s(xj , z)). (7)

Finally, we simplify and transform the objective using a strictly monotonic
decreasing function: Instead of minimizing f(C�, z), we maximize f ′(C�, z) =
e−f(C�,z). Thus, in similarity space, the least squared error representative c� ∈
F for a cluster C� satisfies

c� = arg max
z∈F

∏
xj∈C�

s(xj , z). (8)

Using the concave evaluation function f ′, we can obtain optimal representa-
tives for non-Euclidean similarity spaces.

To illustrate the values of the evaluation function f ′({x1,x2}, z) are used
to shade the background in Fig. 2. The maximum likelihood representative of
x1 and x2 is marked with an ∗ in Fig. 2. For cosine similarity all points on
the equi-similarity are optimal representatives. In a maximum likelihood in-
terpretation, we constructed the distance similarity transformation such that
p(z|c�) ∼ s(z, c�). Consequently, we can use the dual interpretations of prob-
abilities in similarity space and errors in distance space.

4 Algorithms

In this section, we briefly summarize the algorithms used in our comparison.
A random algorithm is used as a baseline to compare the result quality of
KM, GP, HGP, and SOM.
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Fig. 2. More similarity properties shown on the two-dimensional example of Fig. 1.
The goodness of a location as the common representative of the two points is indi-
cated with brightness. The best representative is marked with an ∗. (c) The extended
Jaccard adopts the middle ground between (a) Euclidean and (b) cosine-based sim-
ilarity

4.1 Random Baseline

As a baseline for comparing algorithms, we use clustering labels drawn from
a uniform random distribution over the integers from 1 to k. The complexity
of this algorithm is O(n).

4.2 Weighted Graph Partitioning

Clustering can be posed as a GP problem. The objects are viewed as the set
of vertices V. Two documents xa and xb (or vertices va and vb) are connected
with an undirected edge of positive weight s(xa,xb), or (a, b, s(xa,xb)) ∈ E .
The cardinality of the set of edges |E| equals the number of nonzero similar-
ities between all pairs of samples. A set of edges whose removal partitions a
graph G = (V, E) into k pairwise disjoint subgraphs G� = (V�, E�) is called
an edge separator. The objective in GP is to find such a separator with a
minimum sum of edge weights. While striving for the minimum cut objective,
the number of objects in each cluster has to be kept approximately equal.
We produce balanced (equal sized) clusters from the similarity matrix using
the multilevel graph partitioner Metis [262]. The most expensive step in this
O(n2 · d) technique is the computation of the n× n similarity matrix. In doc-
ument clustering, sparsity can be induced by looking only at the v strongest
edges or at the subgraph induced by pruning all edges except the v near-
est neighbors for each vertex. Sparsity makes this approach feasible for large
data sets. Sparsity is induced by particular similarities definitions based, for
example, on the cosine of document vectors.

4.3 Hypergraph Partitioning

A hypergraph is a graph whose edges can connect more than two vertices
(hyperedges). The clustering problem is then formulated as a finding the
minimum cut of a hypergraph. A minimum cut is the removal of the set of
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hyperedges (with minimum edge weight) that separates the hypergraph into k
unconnected components. Again, an object xj maps to a vertex vj . Each word
(feature) maps to a hyperedge connecting all vertices with nonzero frequency
count of this word. The weight of this hyperedge is chosen to be the total
number of occurrences in the data set. Hence, the importance of a hyperedge
during partitioning is proportional to the occurrence of the corresponding
word. The minimum cut of this hypergraph into k unconnected components
gives the desired clustering. We employ the hMetis package [263] for parti-
tioning. An advantage of this approach is that the clustering problem can be
mapped to a graph problem without the explicit computation of similarity,
which makes this approach computationally efficient with O(n ·d ·k) assuming
a (close to) linear performing hypergraph partitioner. Note that samplewise
frequency information gets lost in this formulation since there is only a single
weight associated with a hyperedge.

4.4 Self-organizing Map

The SOM [70,284] is a popular topology preserving clustering algorithm with
nice visualization properties. For simplicity, we only use a one-dimensional line
topology. Also, two-dimensional or higher dimensional topologies can be used.
To generate k clusters we use k cells in a line topology and train the network
for m = 5, 000 epochs or 10 min (whichever comes first). All experiments are
run on a dual processor 450 MHz Pentium using the SOM implementation
in the Matlab neural network toolbox. The resulting network is subsequently
used to generate the label vector λ from the index of the most activated neuron
for each sample. The complexity of this incremental algorithm is O(n ·d ·k ·m)
and mostly determined by the number of epochs m and samples n.

4.5 Generalized k-means

The KM algorithm using the squared Euclidean or Mahalonobis distances as
a measure of divergence, is perhaps the most popular partitional approach to
clustering. This is really a generative approach, being a limiting case of soft
clustering achieved by fitting a mixture of Gaussians to the data via the EM
algorithm [266]. It has been recently shown that the scope of this framework is
very broad, the essential properties of KM carry over to all regular Bregman
divergences (and only to this class of divergence measures), and a similar
generalization is also possible for the soft version [46]. The complexity of this
set of algorithms is O(n ·d ·k ·m), where m is the number of iterations needed
for convergence.

Given the popularity of KM, we decided to convert cosine, Jaccard, and
Pearson similarity measures into the corresponding divergences using (1), in
addition to retaining the squared Euclidean distance to obtain four versions
of KM. However we have not considered the use of KL-divergence, which has
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a natural correspondence with multinomial mixture modeling, as extensive
work using this information theoretic measure is already available [463].

4.6 Other Clustering Methods

Several other clustering methods have also been considered but have not
been used in our experimental comparison. Agglomerative models (single link,
average link, complete link) [143] are computationally expensive (at least
O(n2 log n)) and often result in highly skewed trees, indicating domination
by one very large cluster. A detailed comparative study of generative, mix-
ture model-based approaches to text, is available from [464]. Certain cluster-
ing algorithms from the data mining community (e.g., CLARANS, DBSCAN,
BIRCH, CLIQUE, CURE, WAVECLUSTER [217, 368]) have been omitted
since they are mostly scalable versions designed for low-dimensional data. Par-
titioning approaches based on principal directions have not been shown here
since they perform comparably to hierachical agglomerative clustering [75].
Other GP approaches such as spectral bisectioning [227] are not included
since they are already represented by the multilevel partitioner Metis.

5 Evaluation Methodology

We conducted experiments with all five algorithms, using four variants (involv-
ing different similarity measures) each for KM and GP, yielding 11 techniques
in total. This section gives an overview of ways to evaluate clustering results.
A good recent survey on clustering evaluation can be found in [463], where
the emphasis is on determining the impact of a variety of cost functions, built
using distance or cosine similarity measures, on the quality of two generic
clustering approaches.

There are two fundamentally different ways of evaluating the quality of
results delivered by a clustering algorithm. Internal criteria formulate quality
as a function of the given data and/or similarities. For example, the mean
squared error criterion is a popular evaluation criterion. Hence, the clusterer
can evaluate its own performance and tune its results accordingly. When us-
ing internal criteria, clustering becomes an optimization problem. External
criteria impose quality by additional, external information not given to the
clusterer, such as class labels. While this makes the problem ill-defined, it is
sometimes more appropriate since groupings are ultimately evaluated exter-
nally by humans.

5.1 Internal (Model-Based, Unsupervised) Quality

Internal quality measures, such as the sum of squared errors, have traditionally
been used extensively. Given an internal quality measure, clustering can be
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posed as an optimization problem that is typically solved via greedy search.
For example, KM has been shown to greedily optimize the sum of squared
errors.

• Error (mean/sum-of-squared error, scatter matrices)
The most popular cost function is the scatter of the points in each cluster.
Cost is measured as the mean square error of data points compared to
their respective cluster centroid. The well-known KM algorithm has been
shown to heuristically minimize the squared error objective. Let n� be the
number of objects in cluster C� according to λ. Then, the cluster centroids
are

c� =
1
n�

∑
λj=�

xj . (9)

The sum of squared errors (SSE) is

SSE(X, λ) ==
k∑

�=1

∑
x∈C�

‖x − c�‖2
2. (10)

Note that the SSE formulation can be extended to other similarities by
using SSE(X, λ) =

∑k
�=1

∑
x∈C�

− log s(x, c�). Since we are interested in a
quality measure ranging from 0 to 1, where 1 indicates a perfect clustering,
we define quality as

φ(S)(X, λ) = e−SSE(X,λ). (11)

This objective can also be viewed from a probability density estimation
perspective using EM [126]. Assuming the data are generated by a mixture
of multivariate Gaussians with identical, diagonal covariance matrices, the
SSE objective is equivalent to maximizing the likelihood of observing the
data by adjusting the centers and minimizing weights of the Gaussian
mixture.

• Edge cut
When clustering is posed as a GP problem, the objective is to minimize
edge cut. Formulated as a [0, 1]-quality maximization problem, the objec-
tive is the ratio of remaining edge weights to total precut edge weights:

φ(C)(X, λ) =

∑k
�=1

∑
a∈C�

∑
b∈C�,b>a s(xa,xb)∑n

a=1

∑n
b=a+1 s(xa,xb)

(12)

Note that this quality measure can be trivially maximized when there are
no restrictions on the sizes of clusters. In other words, edge cut quality
evaluation is only fair when the compared clusterings are well balanced.
Let us define the balance of a clustering λ as

φ(BAL)(λ) =
n/k

max�∈{1,...,k} n�
. (13)
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A balance of 1 indicates that all clusters have the same size. In certain
applications, balanced clusters are desirable because each cluster repre-
sents an equally important share of the data. Balancing has application-
driven advantages, e.g., for distribution, navigation, summarization of the
clustered objects. In [409] retail customer clusters are balanced, so they
represent an equal share of revenue. Balanced clustering for browsing text
documents has also been proposed [44]. However, some natural classes may
not be of equal size, so relaxed balancing may become necessary. A mid-
dle ground between no constraints on balancing (e.g., k-means) and tight
balancing (e.g., GP) can be achieved by overclustering using a balanced
algorithm and then merging clusters subsequently [461]

• Category Utility [162,193]
The category utility function measures quality as the increase in pre-
dictability of attributes given a clustering. Category utility is defined as
the increase in the expected number of attribute values that can be cor-
rectly guessed given a partitioning, over the expected number of correct
guesses with no such knowledge. A weighted average over categories allows
comparison of different sized partitions. Recently, it has been shown that
category utility is related to squared error criterion for a particular stan-
dard encoding [338], whose formulation is used here. For binary features
(i.e., attributes) the probability of the ith attribute being 1 is the mean of
the ith row of the data matrix X:

x̄i =
1
n

n∑
j=1

xi,j . (14)

The conditional probability of the ith attribute to be 1 given that the data
point is in cluster � is

x̄i,� =
1
n�

∑
λj=�

xi,j . (15)

Hence, category utility can be written as

φ(CU)(X, λ) =
4
d

k∑
�=1

n�

n

[(
d∑

i=1

(
x̄2

i,� − x̄i,�

))−
(

d∑
i=1

(
x̄2

i − x̄i

))]
. (16)

Note that this definition divides the standard category by d so that φ(CU)

never exceeds 1. Category utility is defined to maximize predictability of
attributes for a clustering. This limits the scope of this quality measure
to low-dimensional clustering problems (preferably with each dimension
being a categorical variable with small cardinality). In high-dimensional
problems, such as text clustering, the objective is not to be able to predict
the appearance of any possible word in a document from a particular clus-
ter. In fact, there might be more unique words/terms/phrases than docu-
ments in a small data set. In preliminary experiments, category utility did
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not succeed in differentiating among the compared approaches (including
random partitioning).

Using internal quality measures, fair comparisons can only be made amongst
clusterings with the same choices of vector representation and similarity/
distance measure. For example, using edge cut in cosine-based similarity would
not be meaningful for an evaluation of Euclidean KM. So, in many applications
a consensus on the internal quality measure for clustering is not found. How-
ever, in situations where the pages are categorized (labeled) by an external
source, there is a plausible way out!

5.2 External (Model-Free, Semisupervised) Quality

External quality measures require an external grouping, for example as indi-
cated by category labels, that is assumed to be “correct.” However, unlike in
classification such ground truth is not available to the clustering algorithm.
This class of evaluation measures can be used to compare start-to-end per-
formance of any kind of clustering regardless of the models or the similarities
used. However, since clustering is an unsupervised problem, the performance
cannot be judged with the same certitude as for a classification problem. The
external categorization might not be optimal at all. For example, the way Web
pages are organized in the Yahoo! taxonomy is certainly not the best struc-
ture possible. However, achieving a grouping similar to the Yahoo! taxonomy
is certainly indicative of successful clustering.

Given g categories (or classes) Kh (h ∈ {1, . . . , g}), we denote the catego-
rization label vector κ, where xa ∈ Kh ⇔ κa = h. Let n(h) be the number of
objects in category Kh according to κ, and n� the number of objects in cluster
C� according to λ. Let n

(h)
� denote the number of objects that are in cluster �

according to λ as well as in category h given by κ. There are several ways of
comparing the class labels with cluster labels.

• Purity
Purity can be interpreted as classification accuracy under the assumption
that all objects of a cluster are classified to be members of the dominant
class for that cluster. For a single cluster, C�, purity is defined as the ratio
of the number of objects in the dominant category to the total number of
objects:

φ(A)(C�, κ) =
1
n�

max
h

(n(h)
� ). (17)

To evaluate an entire clustering, one computes the average of the cluster-
wise purities weighted by cluster size:

φ(A)(λ, κ) =
1
n

k∑
�=1

max
h

(n(h)
� ). (18)
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• Entropy [115]
Entropy is a more comprehensive measure than purity since rather than
just considering the number of objects “in” and “not in” the dominant
class, it takes the entire distribution into account. Since a cluster with all
objects from the same category has an entropy of 0, we define entropy-
based quality as 1 minus the [0,1]-normalized entropy. We define entropy-
based quality for each cluster as:

φ(E)(C�, κ) = 1 −
g∑

h=1

−n
(h)
�

n�
logg

(
n

(h)
�

n�

)
. (19)

And through weighted averaging, the total entropy quality measure falls
out to be:

φ(E)(λ, κ) = 1 +
1
n

k∑
�=1

g∑
h=1

n
(h)
� logg

(
n

(h)
�

n�

)
. (20)

Both purity and entropy are biased to favor a large number of clusters. In
fact, for both these criteria, the globally optimal value is trivially reached
when each cluster is a single object!

• Precision, recall, and F -measure [429]
Precision and recall are standard measures in the information retrieval
community. If a cluster is viewed as the results of a query for a particular
category, then precision is the fraction of correctly retrieved objects:

φ(P)(C�,Kh) = n
(h)
� /n�. (21)

Recall is the fraction of correctly retrieved objects out of all matching
objects in the database:

φ(R)(C�,Kh) = n
(h)
� /n(h). (22)

The F-measure combines precision and recall into a single number given a
weighting factor. The F1-measure combines precision and recall with equal
weights. The following equation gives the F1-measure when querying for a
particular category Kh

φ(F1)(Kh) = max
�

2 φ(P)(C�,Kh) φ(R)(C�,Kh)
φ(P)(C�,Kh) + φ(R)(C�,Kh)

= max
�

2n
(h)
�

n� + n(h)
. (23)

Hence, for the entire clustering the total F1-measure is:

φ(F1)(λ, κ) =
1
n

g∑
h=1

n(h)φ(F)(Kh) =
1
n

g∑
h=1

n(h) max
�

2n
(h)
�

n� + n(h)
. (24)

Unlike purity and entropy, the F1-measure is not biased toward a larger
number of clusters. In fact, it favors coarser clusterings. Another issue is
that random clustering tends not to be evaluated at 0.
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• Mutual information [115]
Mutual information is the most theoretically well founded among the con-
sidered external quality measures [140]. It is symmetric in terms of κ and
λ. Let X and Y be the random variables described by the cluster labeling
λ and category labeling κ, respectively. Let H(X) denote the entropy of a
random variable X. Mutual information between two random variables is
defined as

I(X,Y ) = H(X) + H(Y ) − H(X,Y ). (25)

Also,
I(X,Y ) ≤ min(H(X),H(Y )). (26)

Since min(H(X),H(Y )) ≤ (H(X) + H(Y ))/2, a tight upper bound on
I(X,Y ) is given by (H(X) + H(Y ))/2. Thus, a worst-case upper bound
for all possible labelings and categorizations is given by

I(X,Y ) ≤ max
X,Y

(
H(X) + H(Y )

2

)
. (27)

Hence, we define [0,1]-normalized mutual information-based quality as

NI(X,Y ) =
2 · I(X,Y )

maxX(H(X)) + maxY (H(Y ))
. (28)

Using

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x) · p(y)
. (29)

Note that normalizing by the geometric mean of H(X) and H(Y ) instead
of the arithmetic mean will also work [410].
Now, approximating probabilities with frequency counts yields our quality
measure φ(NMI):

φ(NMI)(λ, κ) =
2 ·∑k

�=1

∑g
h=1

n
(h)
l

n log n
(h)
l

/n

n(h)/nnl/n

log(k) + log(g)
(30)

Basic simplifications yield:

φ(NMI)(λ, κ) =
2
n

k∑
�=1

g∑
h=1

n
(h)
� logk·g

(
n

(h)
� n

n(h)n�

)
(31)

Mutual information is less prone to biases than purity, entropy, and the F1-
measure. Singletons are not evaluated as perfect. Random clustering has
mutual information of 0 in the limit. However, the best possible labeling
evaluates to less than 1, unless classes are balanced, i.e., of equal size.
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Note that our normalization penalizes over-refinements unlike the standard
mutual information.5

External criteria enable us to compare different clustering methods fairly pro-
vided the external ground truth is of good quality. One could argue against
external criteria that clustering does not have to perform as well as classifica-
tion. However, in many cases clustering is an interim step to better understand
and characterize a complex data set before further analysis and modeling.

Normalized mutual information is our preferred choice of evaluation in
Sect. 6, because it is a relatively unbiased measure for the usefulness of the
knowledge captured in the clustering in predicting category labels. Another
promising evaluation method based on PAC-MDL bounds is given in [45].

6 Experiments

6.1 Data Sets and Preprocessing

We chose four text data sets for comparison. Here we briefly describe them:

• YAH. These data were parsed from Yahoo! news web pages [75]. The
20 original categories for the pages are Business, Entertainment (no
sub-category, art, cable, culture, film, industry, media, multimedia,
music, online, people, review, stage, television, variety), Health,
Politics, Sports, Technology. The data can be downloaded from
ftp://ftp.cs.umn.edu/ dept/users/boley/ (K1 series).

• N20. The data contain roughly 1,000 postings each from the following 20
newsgroup topics [302]6:
1. alt.atheism,
2. comp.graphics,
3. comp.os.ms-windows.misc,
4. comp.sys.ibm.pc.hardware,
5. comp.sys.mac.hardware,
6. comp.windows.x,
7. misc.forsale,
8. rec.autos,
9. rec.motorcycles,

10. rec.sport.baseball,
11. rec.sport.hockey,

5Let κ = (1, 1, 2, 2)T, λ(1) = (1, 1, 2, 2)T, and λ(2) = (1, 2, 3, 4)T. λ(2) is an over-
refinement of correct clustering λ(1). The mutual information between κ and
λ(1) is 2 and the mutual information between κ and λ(2) is also 2. Our [0,1]-
normalized mutual information measure φ(NMI) penalizes the useless refinement:
φ(NMI)(λ(2), κ) = 2/3 which is less than φ(NMI)(λ(1), κ) = 1.

6The data can be found at http://www.at.mit.edu/∼jrennie/20Newsgroups/.
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12. sci.crypt,
13. sci.med,
14. sci.electronics,
15. sci.space,
16. soc.religion.christian,
17. talk.politics.guns,
18. talk.politics.mideast,
19. talk.politics.misc,
20. talk.religion.misc.

• WKB. From the CMU Web KB Project [116], web pages from the following
10 industry sectors according to Yahoo! were selected: airline, computer
hardware, electronic instruments and controls, forestry and wood
products, gold and silver, mobile homes and rvs, oil well services
and equipment, railroad, software and programming, trucking. Each
industry contributes about 10% of the pages.

• REU. The Reuters-21578, Distribution 1.0.7 We use the primary topic key-
word as the category. There are 82 unique primary topics in the data. The
categories are highly imbalanced.

The data sets encompass several text styles. For example, WKB documents vary
significantly in length: some are in the wrong category, some are dead links or
have little content (e.g., are mostly images). Also, the hub pages that Yahoo!
refers to are usually top-level branch pages. These tend to have more similar
bag-of-words content across different classes (e.g., contact information, search
windows, welcome messages) than news content-oriented pages. In contrast,
the content of REU is well-written news agency messages. However, they often
belong to more than one category.

Words were stemmed using Porter’s suffix stripping algorithm [170] in YAH
and REU. For all data sets, words occurring on average between 0.01 and 0.1
times per document were counted to yield the term-document matrix. This
excludes stop words such as a, and very generic words such as new, as well as
too rare words such as haruspex.

6.2 Summary of Results

In this section, we present and compare the results of the 11 approaches on the
four document data sets. Clustering quality is understood in terms of mutual
information and balance. For each data set we set the number of clusters k
to be twice the number of categories g, except for the REU data set where we
used k = 40 since there are many small categories. Using a greater number
of clusters than classes allows multimodal distributions for each class. For
example, in an Xor like problem, there are two classes, but four clusters.

7Available from Lewis at www.research.att.com/∼lewis.
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Let us first look at a representative result to illustrate the behavior of some
algorithms and our evaluation methodology. In Fig. 3, confusion matrices il-
lustrating quality differences of RND, KM E, KM C, and GP C approaches
on a sample of 800 documents from N20 are shown. The horizontal and the
vertical axes correspond to the categories and the clusters, respectively. Clus-
ters are sorted in increasing order of dominant category. Entries indicate the
number n

(h)
� of documents in cluster � and category h by darkness. Expect-

edly, random partitioning RND results in indiscriminating clusters with a
mutual information score φ(NMI) = 0.16. The purity score φ(P) = 0.16 indi-
cates that on average the dominant category contributes 16% of the objects
in a cluster. However, since labels are drawn from a uniform distribution,
cluster sizes are somewhat balanced with φ(BAL) = 0.63. KM E delivers one
large cluster (cluster 15) and many small clusters with φ(BAL) = 0.03. This
strongly imbalanced clustering is characteristic of KM E on high-dimensional
sparse data and is problematic because it usually defeats certain applica-
tion specific purposes such as browsing. It also results in subrandom quality
φ(NMI) = 0.11 (φ(P) = 0.17). KM C results are good. A “diagonal” can be
clearly seen in the confusion matrix. This indicates that the clusters align
with the ground truth categorization, which is reflected by an overall mu-
tual information φ(NMI) = 0.35 (φ(P) = 0.38). Balancing is good as well with
φ(BAL) = 0.45. GP C exceeds KM C in both aspects with φ(NMI) = 0.47
(φ(P) = 0.48) as well as balance φ(BAL) = 0.95. The “diagonal” is stronger
and clusters are very balanced.

The rest of the results are given in a summarized form instead of the more
detailed treatment in the example mentioned earlier, since the comparative
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Fig. 3. Confusion matrices illustrating quality differences of RND, KM E, KM
C, and GP C approaches on a sample of 800 documents from N20. Matrix entries
indicate the number n

(h)
� of documents in cluster 	 (row) and category h (column)

by darkness. Clusters are sorted in ascending order of their dominant category. KM
E delivers one large cluster and shows subrandom quality φ(NMI). KM C results are
good, but are exceeded by GP C in terms of mutual information φ(NMI) as well as
balance φ(BAL)
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trends are very clear even at this macrolevel. Some examples of detailed con-
fusion matrices and pairwise t-tests can be found in our earlier work [413].

For a systematic comparison, ten experiments were performed for each
of the random samples of sizes 50, 100, 200, 400, and 800. Figure 4 shows
performance curves in terms of (relative) mutual information comparing ten
algorithms on four data sets. Each curve shows the difference ∆φ(NMI) in
mutual information-based quality φ(NMI) compared to random partitioning
for five sample sizes (at 50, 100, 200, 400, and 800). Error bars indicate ±1
standard deviations over ten experiments. Figure 5 shows quality in terms of
balance for four data sets in combination with ten algorithms. Each curve
shows the cluster balance φ(BAL) for five sample sizes (again at 50, 100, 200,
400, and 800). Error bars indicate ±1 standard deviations over ten experi-
ments. Figure 6 summarizes the results on all four data sets at the highest
sample size level (n = 800). We also conducted pairwise t-tests at n = 800
to ensure differences in average performance are significant. For illustration
and brevity, we chose to show mean performance with standard variation bars
rather than the t-test results (see our previous work [413]).

First, we look at quality in terms of mutual information (Figs. 4 and 6a).
With increasing sample size n, the quality of clusterings tends to improve.
Nonmetric (cosine, correlation, Jaccard) GP approaches work best on text
data followed by nonmetric KM approaches. Clearly, a nonmetric, e.g., dot-
product based similarity measure is necessary for good quality. Due to the
conservative normalization, depending on the given data set the maximum
obtainable mutual information (for a perfect classifier!) tends to be around
0.8–0.9. A mutual information-based quality around 0.4 and 0.5 (which is ap-
proximately 0.3–0.4 better than random at n = 800) is an excellent result.8

HP constitutes the third tier. Euclidean techniques including SOM perform
rather poorly. Surprisingly, the SOM still delivers significantly better than
random results despite the limited expressiveness of the implicitly used Euclid-
ean distances. The success of SOM is explained by the fact that the Euclidean
distance becomes locally meaningful once the cell centroids are locked onto a
good cluster.

All approaches behaved consistently over the four data sets with only
slightly different scale caused by the different data sets’ complexities. The
performance was best on YAH and WKB followed by N20 and REU. Interestingly,
the gap between GP and KM techniques is wider on YAH than on WKB. The
low performance on REU is probably due to the high number of classes (82)
and their widely varying sizes.

In order to assess those approaches that are more suitable for a particular
amount of objects n, we also looked for intersects in the performance curves

8For verification purposes we also computed entropy values for our experiments and
compared with, e.g., [463] to ensure validity.
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Fig. 4. Mutual information performance curves comparing ten algorithms on four
data sets. Each curve shows the difference in mutual information-based quality
φ(NMI) compared to random for five sample sizes (at 50, 100, 200, 400, and 800).
Error bars indicate ±1 standard deviations over ten experiments

of the top algorithms (nonmetric GP and KM, HGP).9 In our experiments,
the curves do not intersect indicating that ranking of the top performers does
not change in the range of dataset sizes considered.

In terms of balance (Figs. 5 and 6b) the advantages of GP are clear. GP ex-
plicitly tries to achieve balanced clusters (n = 800 : φ(BAL) ≈ 0.9). The second
tier is HGP, which is also a balanced technique (n = 800 : φ(BAL) ≈ 0.7) fol-
lowed by nonmetric KM approaches (n = 800 : φ(BAL) ≈ 0.5). Poor balancing

9Intersections of performance curves in classification (learning curves) have been
studied recently, e.g., in [359].
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Fig. 5. Amount of balancing achieved for four data sets in combination with ten
algorithms. Each curve shows the cluster balance φ(BAL) for five sample sizes (at
50, 100, 200, 400, and 800). Error bars indicate ±1 standard deviations over ten
experiments.

is shown by SOM and Euclidean KM (n = 800 : φ(BAL) ≈ 0.1). Interestingly,
balancedness does not change significantly for the KM-based approaches as
the number of samples n increases. GP-based approaches quickly approach
perfect balancing as would be expected since they are explicitly designed to
do so.

Nonmetric GP is significantly better in terms of mutual information as
well as balance. There is no significant difference in performance amongst the
nonmetric similarity measures using cosine, correlation, and extended Jac-
card. Euclidean distance-based approaches do not perform better than random
clustering.
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Fig. 6. Comparison of cluster quality in terms of (a) mutual information and (b)
balance on average over four data sets with ten trials each at 800 samples. Error bars
indicate ±1 standard deviation. Graph partitioning is significantly better in terms
of mutual information as well as in balance. Euclidean distance-based approaches
do not perform better than random clustering

7 Conclusions

This work provides a mutual information-based comparison of several
similarity-based clustering approaches to clustering of unannotated text across
several similarity measures. It also provides a conceptual assessment of a
variety of similarity measures and evaluation criteria.

The comparative results indicate that for the similarity measures consid-
ered, graph partitioning is better suited for word frequency-based clustering of
web documents than generalized KM, HGP, and SOM. The search procedure
implicit in GP is far less local than the hill-climbing approach of KM. More-
over, it also provides a way to obtain clusters of comparable sizes and exhibit
a lower variance in results. Note that while this extra constraint is helpful
for datasets that are reasonably balanced, it can degrade results when the
classes are highly skewed. With regard to the appropriateness of various dis-
tance/similarity measures, it was very clear that metric distances such as the
L2 norm (Euclidean distance) are not appropriate for the high-dimensional,
sparse domains that characterize text documents. Cosine, correlation, and ex-
tended Jaccard measures are much more successful and perform comparably
in capturing the similarities implicitly indicated by manual categorizations
of document collections. Note that all three measures tune to different de-
grees to the directional properties of the data, which is the likely reason for
their effectiveness. This intuition is supported by the recent development of
a generative model using mixture of von Mises–Fisher distributions from di-
rectional statistics and tailored for high-dimensional data, which has been
applied to text clustering with clearly superior results [43]. Such generative
models are also attractive since their computational complexity can be linear
in the number of objects, as compared a mimimum of quadratic complexity
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for any similarity-based method that involves a comparison between each pair
of objects.

Since document clustering is currently a popular topic, a comparative
study such as that undertaken in this chapter is by nature an unfinished
one as new techniques and aspects emerge regularly. For example, a recent
paper introduces a similarity measure based on the number of neighbors two
points share, and shows promising results on earth sciences data and word
clustering [149]. It will be interesting to see how suitable this measure is for
clustering a variety of text collections.
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Clustering Very Large Data Sets
with Principal Direction Divisive
Partitioning

D. Littau and D. Boley

Summary. We present a method to cluster data sets too large to fit in memory,
based on a Low-Memory Factored Representation (LMFR). The LMFR represents
the original data in a factored form with much less memory, while preserving the
individuality of each of the original samples. The scalable clustering algorithm Prin-
cipal Direction Divisive Partitioning (PDDP) can use the factored form in a natural
way to obtain a clustering of the original dataset.

The resulting algorithm is the PieceMeal PDDP (PMPDDP) method. The scal-
ability of PMPDDP is demonstrated with a complexity analysis and experimental
results. A discussion on the practical use of this method by a casual user is provided.

1 Introduction

One of the challenges in data mining is the clustering of very large data sets.
We define a very large data set as a data set that will not fit into memory at
once. Many clustering algorithms require that the data set be scanned many
times during the clustering process. If the data cannot fit into memory, then
the data must be repeatably rescanned from disk, which can be expensive.

One approach to clustering large data sets is to adapt clustering algorithms
suitable for small data sets to much larger data sets. There are two popular
methods used to adapt clustering algorithms to large data sets. The first tech-
nique is to extract a subsample of the data, such that the subsample is small
enough to fit into available memory and be clustered. Other techniques to ac-
celerate the clustering process are often applied at the same time. Once a clus-
tering is obtained, the remaining data points can be assigned to the clusters
with the closest centroid. The major drawbacks to sampling are that it can be
difficult to know if a given subsample is a representative sample and therefore
provides an accurate clustering, and that the outliers will usually be ignored.

The second technique commonly used to adapt clustering algorithms to
large data sets, as in [85, 121, 459], is to approximate a given data item by
assigning it to a single representative vector. One representative vector may
take the place of an arbitrary number of data items. Once a data item has
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been assigned to a representative, it is no longer possible to differentiate it
from any other data item assigned to the same vector. Thus, the resolution of
any clustering of the data is limited by the granularity of the representatives.

We propose an alternate approach to adapt the principal direction divi-
sive partitioning (PDDP) clustering method [76] to very large data sets. We
create a low-memory factored representation (LMFR) of the data, and then
cluster the LMFR using PDDP. Every data point has a unique representation
in the LMFR, and every data point is examined during the construction of
the LMFR. The LMFR is constructed piecewise using samples of the data,
such that the samples will fit into memory. The samples are selected without
replacement, and selection continues until the data set is exhausted. Once an
approximation has been constructed for each sample, the approximations are
assembled into an LMFR representing the entire data set.

The LMFR avoids what we claim are the major drawbacks to other tech-
niques. All data are examined during the construction of the LMFR, which
is not the case when subsamples are clustered as a representative of the en-
tire data set. Each data item has a unique representation in the LMFR, so
the granularity of the clustering can be finer than that achieved by a method
which assigns many data items to a single representative vector. Every data
item is examined and participates in the construction of the LMFR, so outliers
will not be ignored. Furthermore, since the method is deterministic, we need
not be concerned that other, perhaps better clusterings could be constructed.

The remainder of the chapter is as follows. First, we provide some back-
ground on a few of the methods available to cluster large data sets. Next, we
describe the technique used to construct the LMFR. Then, we describe how
the original representation of the data can be easily replaced by the LMFR in
the PDDP method, a process we call Piecemeal PDDP (PMPDDP). Finally
we show some experimental results, which demonstrate that the clustering
quality of the PMPDDP method is similar to PDDP, and that PMPDDP
maintains the scalability of PDDP.

2 Background

The problem of clustering very large data sets is an active area of research.
Many approaches adapt existing clustering methods such as hierarchical ag-
glomeration [202] and k-means [143, p. 201] to much larger sets. There are also
clustering methods that were specifically designed from the ground up to be
used for large data sets. Note that the following is a sketch of some clustering
methods for large data sets and is not intended to be taken as exhaustive.

2.1 Sampling

Before we describe any specific methods, we describe sampling. Sampling is a
general approach to extending a clustering method to very large data sets. A
sample of the data is selected and clustered, which results in a set of cluster
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centroids. Then, all data points are assigned to the closest centroid. Many
large data set clustering methods use sampling to overcome time and memory
limitations.

2.2 Hierarchical Agglomeration and Its Variants

Hierarchical agglomeration [202] produces a hierarchy of clusters, such that
any given level of cluster refinement can be selected from the results. It starts
with singleton clusters and produces the hierarchy of clusters by successively
merging the two clusters that are closest. Typically, the distances between
clusters are determined by computing the distance from every point in a given
cluster to every other point in every other cluster. The expense of computing
the distances between all points is the most serious drawback to the method.

Scatter/Gather [121] speeds up agglomeration by dividing the data into
buckets and agglomerating individual buckets until the number of clusters in
a given bucket is reduced by a specific amount. The clusters are replaced by
their weighted centroids, and the centroids from all buckets are then placed in
a smaller set of buckets and agglomerated again. The process continues until a
specified number of centroids are created, after which all data are assigned to
the closest centroid. While this method was specified as a speed-up for data
sets that would fit into memory, combining Scatter/Gather with sampling
would make it appropriate for large data sets. Alternately, the amount of data
in a given bucket could be sized to fit into memory, and only one bucket of data
would appear in memory and be agglomerated at a given time. The resulting
centroids could be saved to disk, and another bucket of data could then be
loaded and agglomerated, and so on. This would require some additional disk
access, but would result in a method that could work for arbitrarily large data
sets.

CURE [209] adapts hierarchical agglomeration by using a small set of
well-scattered points to compute the distances between clusters, rather than
considering all the points in a cluster when computing the distances between
clusters. This significantly speeds up the procedure. Subsampling the data
was also specified when the data set was too large.

There are other extensions of hierarchical agglomeration. For instance,
[174] uses maximum likelihood determined by a multivariate Gaussian model
to decide the two clusters that should be merged. The work in [458] uses a
heap to store the distances between all pairs to speed up access to distance
information. Refinement of the clusters to increase quality is described in
[261]. While these methods were designed to enhance the speed and quality of
hierarchical agglomeration, combining them with subsampling the data would
make them suitable for clustering very large data sets.

2.3 k-Means and Its Variants

k-Means produces clusters using an iterative method. A random set of starting
centroids is selected from the data set, and all data points are assigned to the
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closest center. Then, new centroids are computed using the data points in
each cluster, and again all data points are assigned to the closest centroid.
The process continues until there is no further data movement. Multiple passes
with random restarts are usually performed to ensure a good clustering has
been found.

One adaptation of k-means to very large data sets is provided in [85].
Samples are drawn from the data set, without replacement, and clustered.
The data points in a given cluster are replaced by a representative, which is
much like a weighted centroid, but provides a bit more information. This is
done for all current clusters. Then more samples are drawn from the data set
and are clustered along with the weighted centroids. The process continues
until the data set is exhausted or the centroids stop moving.

It is difficult to know good choices for starting centers for k-means. In-
stead of repeating k-means with random restarts, [84] provides a technique
to generate good candidate centers to initialize k-means. The method works
by selecting some random samples of the data and clustering each random
sample separately using k-means. The centroids from each clustering are then
gathered into one group and clustered to create a set of initial centers for a
k-means clustering of the entire data set.

There are other variants of k-means. The work in [357] uses a k–d tree
to organize summaries of the data. It is fast but does not perform well for
dimensions higher than eight. The work in [20] used a k–d tree to cut down
on the number of distance computations required, though it is not clear if the
application is limited to spatial data. We assume it is, since they used the same
kind of data structure as in [357], and their experiments were conducted on
low-dimension data. Therefore these methods are more appropriate for large
low-dimension data sets.

Very fast k-means (VFKM) [141] takes a different approach from other
clustering methods. The stated desire is to produce a model (clustering) using
a finite amount of data that cannot be distinguished from a model constructed
using infinite data. The error is bounded by comparing the centroids resulting
from different k-means clusterings using different sample sizes. Stated in a very
simplified manner, if the centroids from the different clusterings are within a
specified distance of each other, they are considered to be the correct centroids.
Otherwise a new, larger sample is drawn from the data set and clustered, and
the resulting centroids are compared to the those obtained from the previous
run. The authors suggest that this method is not a reasonable approach unless
the database being clustered contains millions of items.

2.4 Summary of Cited Clustering Methods

Most of the extensions of hierarchical agglomeration were designed to speed
up the process for data sets that can fit into memory. Sampling was indicated
when the data sets grew too large. Sampling the data ignores outliers, which
may be interesting data items in some circumstances. Also, it is difficult to
know whether a truly representative sample has been drawn from the data set.
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The extensions of k-means to large data sets either drew samples or as-
signed many data points to one representative vector. Using one vector to
approximate many data items, as in [85,121,459], is a relatively popular tech-
nique when constructing approximations to the data. However, once the as-
signments have been made, there is no way to distinguish between the data
items assigned to a given representative. The resolution of any clustering of
the data is limited by the resolution of the representatives.

In the clustering method we present in this chapter, no sampling of the
data is necessary. All data items are exposed to the method. Each data item
has a unique representation in the approximation we construct. Therefore,
the resolution of the clustering is not limited by the approximation of the
data. We believe these differences result in a method which provides a useful
alternative to other large data set clustering methods.

3 Constructing a Low-Memory Factored Representation

The LMFR is comprised of two matrices. The first matrix contains repre-
sentative vectors, and the second contains data loadings. The representative
vectors are the centroids obtained from a clustering of the data. The data
loadings are a least-squares approximation to each data item using a small
number of selected representative vectors.

Since the data set is assumed to be too large to fit into memory, we divide
it up into smaller samples called sections. Each data item from the original
representation appears once and only once across all sections. We individually
compute an LMFR for each section.

First, we describe the method used to obtain the LMFR for one section
of data. Then, we describe how we assemble the LMFRs for each section into
one LMFR, which represents the entire data set.

3.1 Constructing an LMFR for One Section

Suppose we have an n×m matrix A of data samples, such that A comfortably
fits into memory at once. We compute the factored representation

A ≈ CAZA, (1)

where CA is an n×kc matrix of representative vectors and ZA is a kc×m ma-
trix of data loadings. Each column zi of ZA approximates the corresponding
column ai of A using a linear combination of the vectors in CA.

The first step in computing this factored form of A is to obtain the ma-
trix of representative vectors CA. To accomplish this, we partition A into
kc clusters and compute the kc centroids of the clusters. These centroids are
collected into an n × kc matrix CA,

CA = [c1 c2 · · · ckc
]. (2)
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We use the PDDP method to compute the clustering of A and therefore obtain
CA, since PDDP is fast and scalable. In principle, any clustering method could
be used to obtain the components of CA.

The matrix of data loadings ZA is computed one column at a time. In
approximating each column ai of A, we use only a small number (kz) of the
representatives in CA. Therefore, each column zi in ZA has only kz nonzero
entries. For example, to approximate ai, we choose the kz columns in CA

which are closest in Euclidean distance to ai and implicitly collect them into
an n× kz matrix Ci. Then the nonzero entries in the column zi are obtained
by solving for the kz-vector ẑi:

ẑi = arg min
z

||ai − Ciz||22. (3)

If the kz vectors in Ci are linearly independent, we use the normal equations
with the Cholesky decomposition to solve the least-squares problem. If the
normal equations fail, we use the more expensive SVD to get the least-squares
approximation of the data item. Even though there has been no attempt to
create orthogonal representative vectors, in the majority of cases the normal
equations are sufficient to solve the least-squares problem. The LMFR algo-
rithm is shown in Fig. 1.

When kz = kc, this factorization of A is essentially identical to the concept
decomposition [136], except that we use PDDP to obtain the clustering rather
than spherical k-means. We typically select a value for kz such that kz 	 kc,
which can result in significant memory savings. Since the memory savings are
dependent on Z being sparse, we also require the condition that kz 	 n.
Thus a low-dimension matrix is not a good candidate for this factorization
technique from a memory-savings standpoint.

To obtain memory savings, it is also necessary to control the size of CA,
which is done by making kc as small as possible. There is a trade-off between

Algorithm LMFR.
0. Start with a n × m matrix A, where each column of A

is a data item, and set the values for kc, the number
of representative vectors in C, and kz, the number of
representatives used to approximate each data item.

1. Partition A into kc clusters
2. Assemble the kc cluster centroids from step 1 into

an n × kc matrix CA ((2) in the text).
3. For i = 1, 2, . . . , m do
4. Find the kz columns in CA closest to ai

5. Collect the kz columns found in step 4
as the n × kz matrix Ci

6. Compute ẑi = arg minz ||ai − Ciz||22
7. Set the ith column of ZA = ẑi

8. Result CA and ZA, which represent a factorization of A

Fig. 1. LMFR algorithm
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the two parameters kc and kz, since for a given amount of memory avail-
able to contain the LMFR CAZA, increasing one of the parameters requires
decreasing the other.

3.2 Constructing an LMFR of a Large Data Set

Once an LMFR has been computed for each section, they are assembled into
a single factored representation of the entire original data set. A graphical de-
piction of this technique is shown in Fig. 2. What follows is a formal definition
of the entire process of constructing the LMFR of a large data set.

We consider the original representation of the data set as an n×m matrix
M, such that M will not fit into memory at once. We seek the single factored

m

M m

n

n

C Z

.
kc

. . . . . .

kz

dk

kd
1 2 ks

c nonzeros per columnk

section section section section section section

section representatives

data loadings

Clustering
Least Squares

very sparse

Fig. 2. Construction details of the low-memory representation. M is divided into
ks sections, and the low-memory representation of each section is computed without
referring to any other section. Each section is associated with a subdivision of C
and Z. The columns of a subdivision of C are the cluster centroids resulting from
a clustering of the associated section. A column of a subdivision of Z is computed
with a least-squares approximation to the corresponding column of M, using the kz

closest centroids from the associated subdivision of C
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representation CZ such that
M ≈ CZ, (4)

where C and Z will fit into memory and can be used to cluster the data in
M. Since M cannot fit into memory at once, M is divided into ks disjoint
sections,

M = [M1 M2 · · · Mks
], (5)

such that each section Mj of M will fit into memory. This partitioning of
M is virtual since we assume only one section Mj will be in memory at any
given instance. We also assume that the ordering of the columns of M is
unimportant. We can now construct an LMFR

Mj ≈ CjZj (6)

for each section Mj of M using the technique from Sect. 3.1. After computing
an approximation (6) for each section of data, they can be assembled into the
two-matrix system

C = [C1 C2 · · · Cks
] ,

Z =

⎡
⎢⎢⎣

Z1

Z2
0

0
. . .

Zks

⎤
⎥⎥⎦ ,

(7)

where C has the dimension n×kskc and Z has the dimension kskc×n. We call
this system a general LMFR. The parameters used to construct the general
LMFR are summarized in Table 1.

Note that the idea of processing the data in separate pieces and assembling
the results has been done previously in the context of principal component
analysis [255]. However, in that case the application was intended for situa-
tions in which different sets of attributes for a given data point were distrib-
uted across separate databases. The LMFR construction method is designed
to process data points that have all attributes present.

Table 1. Definition of the parameters used in constructing a general LMFR

Parameter Description

m Total number of data items

n Number of attributes per data item

γ1 Fill fraction of the attributes in M

ks Number of sections

kd Number of data items per section

kc Number of centroids per section

kz Number of centroids approximating
each data item
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3.3 Applications of the LMFR

The only application of the LMFR which we cover in this work is using the
LMFR to extend PDDP to large data sets. However, this is not the only
successful application of the LMFR in data mining. In [319] we showed an
adaptation of the LMFR to general stream mining applications. The LMFR
allows for more of the stream to be exposed to a given stream mining method
at once.

Another application we have investigated is using the LMFR for document
retrieval [317]. We demonstrated that we could construct an LMFR of a given
data set that had better precision vs. recall than an SVD of a specific rank,
while taking less time to construct and occupying less memory than the SVD.
Specifically, the LMFR with kz = 5 and kc = 600 for a 7,601-item data set
took 187 s to construct and occupied 11.32 MB of memory, while a rank 100
SVD took 438 s to construct and occupied 40.12 MB of memory. Given the
advantage in construction time and memory used, the LMFR appears to be
a viable alternative to the SVD for document retrieval.

4 Complexity of the LMFR

We now provide a complexity analysis of the cost of computing the LMFR.
To make the explanation simpler, we make the following assumptions: the
data set represented by M is evenly distributed among the sections so that
kc and kd are the same for each section, and kz is the same for each section
ks, kdks = m, and m � n. These are not necessary conditions to construct
an LMFR, but they do make the explanation clearer.

4.1 Cost of Obtaining the Section Representatives

The first step in computing the LMFR CjZj for a given section of data Mj is
to obtain the section representatives that comprise Cj . These are found via a
clustering of Mj . We assume that PDDP will be used to obtain the clustering.
To simplify the analysis, we assume that we will create a perfectly balanced
binary tree. This means that all the leaf clusters in a given “level” will have
the same cardinality, and that all the clusters on a given level will be split
before any clusters on the next level.

The major cost of computing the PDDP clustering is that of computing the
principal direction of the data in the current cluster being split. The principal
direction is determined by the rank 1 SVD of the cluster. The rank 1 SVD
is computed using the iterative procedure developed by Lanczos. The major
cost in finding the rank 1 SVD is computing a matrix–vector product of the
form Mjv twice each iteration.

PDDP starts with the root cluster, which is all the data being clustered.
In this case, the root cluster is the n× kd matrix Mj , where n is the number
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of attributes and kd is the number of data items in the section. Computing
the product of one row in Mj with a right vector v takes kd multiplications
and additions. There are n rows in Mj . Therefore, the cost of computing a
single matrix–vector product is

γ1nkd, (8)

where γ1 is the fill fraction of Mj . If the data in M are dense, γ1 = 1. The
overall cost of determining the principal direction of the root cluster Mj is

c1γ1nkd, (9)

where c1 is a constant encapsulating the number of matrix–vector products
computed before convergence.

After splitting the root cluster, we have two leaf clusters. Due to our
assumption that we are creating a perfectly balanced binary tree, each of the
two current leaf clusters contains the same number of data items, and the next
two clusters chosen to be split will be the two current leaf clusters. Therefore,
the cost of splitting the next two clusters is

2c1γ1n

(
kd

2

)
= c1γ1nkd, (10)

which is the same as the cost of computing the splitting of the root cluster.
The PDDP tree now contains four leaf clusters. The cost of splitting these
four leaf clusters is

4c1γ1n

(
kd

4

)
= c1γ1nkd. (11)

This result and the previous result indicate that the cost of computing a given
level in the binary tree is the same for all levels. Every new level created in
the perfectly balanced binary tree increases the number of leaf clusters by a
power of 2. This progression is shown in Fig. 3.

The cost of obtaining the kc section representatives for the section Mj is

c1γ1nkd log2 (kc), (12)

assuming that the number of section representatives kc is an integer power
of 2. If we have a total of ks sections with kd data points per section, and
we obtain the same number of section representatives kc for each section, the
total cost of obtaining all section representatives for the entire data set will
be

costC = c1γ1nkskd log2 (kc) = c1γ1nm log2 (kc) . (13)

For clarity, we reproduce all the assumptions involved in the formulation, as
well as the final result for the cost of computing the section representatives,
in Fig. 4.
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Number of clusters Cost

2 c1γ1nkd

4 c1γ1nkd + 2c1γ1n
(

kd

2

)
= 2c1γ1nkd

8 c1γ1nkd + 2c1γ1n
(

kd

2

)
+ 4c1γ1n

(
kd

4

)
= 3c1γ1nkd

16 c1γ1nkd + 2c1γ1n
(

kd

2

)
+ 4c1γ1n

(
kd

4

)
+ 8c1γ1n

(
kd

8

)
= 4c1γ1nkd

kc c1γ1nkd log2(kc)

Fig. 3. Complexity for the PDDP tree computation, shown for the number of
clusters computed for a given section of data. The value of kc is assumed to be an
integer power of 2, and the tree is assumed to be perfectly balanced

Assumptions:
1. PDDP is used to obtain the section representatives
2. A perfectly balanced binary tree is created
3. each section has the same value of kd and kc

4. kdks = m
5. kc is an integer power of two

Result: Cost of obtaining C is
costC = c1γ1nm log2 (kc)

Fig. 4. Summary of the cost of obtaining C

4.2 Computing the Data Loadings

Computing the data loadings in Zj is a multistep process. To find the least-
squares approximation to a given data item xi in Mj , it is necessary to find
the distance from xi to every section representative cl in Cj , select the kz

section representatives cl that are closest to xi, and compute the least-squares
approximation using the normal equations.

Computing the distance from xi to a single representative in Cj requires
γ1n multiplications and subtractions. Since there are kc representatives in
Cj , the total cost of computing the distances for one data item xi is γ1nkc.
We assume that the number of representatives kz used to approximate xi is
very small, so that it will be less expensive to directly select the kz closest
representatives, rather than sorting the distances first. Therefore, it takes kckz

searches through the representatives to find the kz closest representatives,
which are used to form the n × kz matrix Ci as in Sect. 3.1.
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Assumptions:
1. kz � kc, so direct search for kz closest representatives

in C is less expensive than sorting
2. same value for kz is used for all sections
3. normal equations are used to obtain least-squares
4. additional lower-order terms from least squares are ignored

Result: Cost of obtaining Z is

costZ = m
(
γ1nkc + kckz + γ1nk2

z + 1
3
k3

z

)
Fig. 5. Summary of the cost of obtaining Z

The final step is to compute the least-squares approximation for each data
item using the kz centers obtained in the previous step. The normal equations
are used to obtain the least-squares approximation. The cost of computing a
least-squares approximation for the n × kz system is:

γ1nk2
z +

1
3
k3

z ,

if we ignore lower-order terms. The total combined cost for obtaining the
loadings for one data item xi is

γ1nkc + kckz + γ1nk2
z +

1
3
k3

z , (14)

and the cost of obtaining all data loadings for all sections is

costZ = m

(
γ1nkc + kckz + γ1nk2

z +
1
3
k3

z

)
. (15)

The assumptions and final cost for computing the data loadings, which
comprise the Z matrix, are shown in Fig. 5.

5 Clustering Large Data Sets Using the LMFR

Now that we have an LMFR of the entire data set, we can replace the orig-
inal representation of the data with the LMFR to obtain a clustering using
PDDP. We call the extension of PDDP to large data sets piecemeal PDDP
(PMPDDP). The piecemeal part of the name is from the fact that the LMFR
is constructed in a piecemeal fashion, one section at a time, and from the
fact that PDDP is used to compute the intermediate clusterings used in the
construction of the LMFR.

The PMPDDP clustering method is straightforward. The process is to first
construct the LMFR of the data, and then cluster the LMFR using PDDP.
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Algorithm PMPDDP.
0. Start with a n × m matrix M, where each column of M is a data item,

and set the values for ks, kc, kz (see Table 1) and kf , the number
of final clusters computed

1. Partition M into ks disjoint sections, |M1 M2 , . . . , Mks |.
2. For j = 1, 2, . . . , ks do
3. Compute the LMFR (cf. Fig. 1) for the section Mj using

PDDP to compute Cj (cf. S3.2)
4.. Assemble the matrices C and Z as in (7) in the text, using all the

matrices Cj and Zj from all passes through steps 2-3
5.. Compute the PDDP tree with kf clusters for the entire system CZ.
6. Result: A binary tree with kf leaf nodes forming a partitioning

of the entire data set.

Fig. 6. PMPDDP algorithm

The PMPDDP algorithm is shown in Fig. 6. An earlier version of PMPDDP
appeared in [318].

PDDP is useful for producing the section representatives in C because it
is fast and scalable. Since we are only interested in finding suitable represen-
tatives, we do not require the optimal clustering of the data in a section, just
an inexpensive one. More expensive clustering algorithms will probably not
significantly alter the results, though of course the values in the factoriza-
tion would change. However, we could replace PDDP with any other suitable
clustering algorithm without difficulty, since when we compute the section
representatives we are dealing with a piece of the original data that will fit
into memory. k-Means, especially bisecting k-means [407], for example, would
be candidate methods to replace PDDP at this stage.

However, when clustering the factored form, the situation is different. Any
clustering algorithm that uses a similarity measure, such as the aforemen-
tioned k-means method, would require that the data be reconstructed each
time a similarity measure was needed. Reconstructing the entire data set at
once requires at least as much memory as the original data set, defeating the
purpose of the LMFR. Reconstructed sparse data will take up more space
than the original data, since the section representatives will be denser than
the original data items. The LMFR only saves memory as long as it remains
in at factored form. Naturally, small blocks of the original data could be re-
constructed on the fly every time a similarity measure is required, but that
could add considerable additional expense.

PDDP does not use a similarity measure when determining the cluster-
ing. Instead, PDDP uses the principal direction of the data in a cluster to
determine how to split that cluster. The principal direction is computed using
an iterative procedure developed by Lanczos which computes products of the
form: (

M − weT
)
v = Mv − w

(
eTv

)
, where w =

1
m

(
MeT

)
, (16)
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where v is some vector. We can replace M by the factored form CZ, group
the products accordingly, and compute:

C (Zv) − ŵ
(
eTv

)
, where ŵ =

1
m

C
(
ZeT

)
, (17)

and in doing so we never explicitly reconstruct the data. Therefore, the LMFR
is well suited to being clustered using the PDDP method.

5.1 Scatter Computation

There is one other aspect of PMPDDP to consider. PDDP normally chooses
the next cluster to split based on the scatter values of the leaf clusters. Com-
puting the scatter when clustering the LMFR CZ would require that the data
be reconstructed. For a scatter computation, this could be done in a block-
wise fashion without too much difficulty. However, we wish to have a method
that does not require reconstruction of the data.

Instead of reconstructing the data to directly compute the scatter, we
estimate the scatter. If we could compute all the singular values σi, we could
compute the exact scatter s as

s = σ2
1 + σ2

2 + · · · + σ2
n. (18)

This formula can be rewritten as

s = σ2
1

(
1 +

σ2
2

σ2
1

+
σ2

3

σ2
1

+ · · · + σ2
n

σ2
1

)
. (19)

Now, we can use the two leading singular values to estimate the scatter as

s ≈ σ2
1

(
1 +

σ2
2

σ2
1

+
(

σ2
2

σ2
1

)2

+ · · · +
(

σ2
2

σ2
1

)n−1
)

= σ2
1

⎛
⎝1 −

(
σ2
2

σ2
1

)n

1 − σ2
2

σ2
1

⎞
⎠, (20)

where σ1 is the leading singular value of the cluster and σ2 is the next singular
value. The estimate assumes that the singular values decrease geometrically,
which from empirical observation seems to be a reasonable assumption. Note
that if we computed all the singular values, we could compute the exact scat-
ter. However, computing all or even a significant number of the singular values
would be prohibitively expensive. A high degree of accuracy is not necessary,
since this scatter computation is only used to determine the cluster to be split
next. The estimate needs only to be consistent with the data being clustered.
Presumably, if the estimate is either too low or too high, the same type of
estimation error will exist for all clusters.

The leading singular value is associated with the principal direction, and
an estimate of the second singular value is available without much additional
cost. Estimating the scatter requires that the principal direction of all leaf
clusters needs to be computed, whether they are split or not. We could choose
another splitting criterion, but from previous results with PDDP on various
data sets, scatter seems to be a very good way to select the clusters to split.
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6 Complexity of a PMPDDP Clustering

In the following we develop some formulas for the cost of a general PMPDDP
clustering. We use the same assumptions as we did for the analysis used to
get the section representatives comprising C (cf. S4.1). We assume we will
produce a completely balanced binary tree with a number of leaves being an
integer power of 2, and that the cost of clustering is basically the cost of
obtaining the principal directions, which determine how each cluster is split.

Replacing the original matrix M with the approximation CZ in the PDDP
method changes the calculation in the splitting process from a matrix–vector
product to a matrix–matrix–vector product. This product can be written as
C(Zv), where v is an “generic” m× 1 vector, C is an n× kskc matrix, and Z
is a kskc × m matrix. Note that we group the product such that the matrix-
vector product is computed before multiplying by the other matrix. We must
avoid explicitly forming the product CZ, since the result of that product
will not fit into memory. Z is a sparse matrix with kz nonzeroes per column,
and therefore the only computation cost with respect to Z is incurred when
computing the product of the nonzero elements in Z with the elements in v.
We show all the parameters involved in a PMPDDP clustering in Table 2.

Again, we start the analysis with the root cluster. The cost of computing
the principal direction of the root cluster is

c2(γ2nkskc + mkz), (21)

where γ2 is the fill fraction of C and c2 is a constant encapsulating the number
of matrix–matrix–vector products required to convergence. The mkz portion
of the formula is the contribution from forming the product Zv, where v is
some vector and nkskc is the cost of multiplying C by the resultant of the
product Zv.

At this point, we have two leaf clusters. One might be tempted to assume
that the expense would follow the same relationship as in regular PDDP, and

Table 2. Definition of the parameters used in PMPDDP

Parameter Description

m Total number of data items

n Number of attributes per data item

γ1 Fill fraction of the attributes in M

γ2 Fill fraction of the attributes in C

ks Number of sections

kd Number of data items per section

kc Number of centroids per section

kz Number of centroids approximating
each data item

kf Number of final clusters
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that the cost of splitting these two clusters is the same as that of the root
cluster, but that is incorrect. The reason for the difference is that while the
cost of forming the product Zv decreases with decreasing cluster size, the cost
of multiplying C by the resultant of the product Zv does not decrease with
decreasing cluster size. As a result, the cost of splitting these two clusters is

2c2γ2nkskc + 2c2

(m

2

)
kz = 2c2γ2nkskc + c2mkz. (22)

It might be possible to reduce the computational expense associated with
C by only considering the columns of C which actually participate in the
product when splitting the leaf clusters. However, there does not appear to
be an inexpensive way to determine the columns in C that would be required
at each step, so we leave the method as stated and accept the expense.

Following the pattern to its conclusion, as shown in Fig. 7, we have the
result for the cost of clustering CZ,

c2γ2nkskc(kf − 1) + c2mkz log2(kf ). (23)

We have not yet considered the fact that PMPDDP uses the estimated
scatter to determine the cluster that is split next. To obtain the estimated

Number of clusters Cost

2 c2γ2nkskc + c2mkz

4 c2γ2nkskc + c2mkz + 2c2γ2nkskc + 2c2

(
m

2

)
kz

= 3c2γ2nkskc + 2c2kzm

8 c2γ2nkskc + c2mkz + 2c2γ2nkskc + 2c2

(
m

2

)
kz

+ 4c2γ2nkskc + 4c2

(
m

4

)
kz

= 7c2γ2nkskc + 3c2mkz

16 c2γ2nkskc + c2mkz + 2c2γ2nkskc + 2c2

(
m

2

)
kz

+ 4c2γ2nkskc + 4c2

(
m

4

)
kz

+ 8c2γ2nkskc + 8c2

(
m

8

)
kz

= 15c2γ2nkskc + 4c2mkz

kf c2γ2nkskc(kf − 1) + c2mkz log2(kf )

Fig. 7. Complexity for the PMPDDP tree computation shown for the number of
clusters computed. The additional expense of computing the estimated scatter is
not considered
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scatter, it is necessary to compute the principal direction of all the leaf clus-
ters before we split them. We effectively incur the expense of computing an
additional level in the PDDP tree, which doubles the number of splits com-
puted. Therefore, the actual cost of computing a PDDP clustering of CZ when
using the estimated scatter is

costclusterCZ = c2γ2nkskc(2kf − 1) + c2mkz log2(2kf ). (24)

For clarity, we reproduce all the costs of computing a PMPDDP clustering
in Table 3, and all the assumptions used to write the formulas in Fig. 8. Note
that the costs are higher than computing a PDDP clustering. This is expected
since we already incur more cost than a PDDP clustering just by obtaining
the section representatives that comprise C, assuming kc > kf .

6.1 Complexity for One Varying Parameter

In this section we produce the PMPDDP complexity formulas for the case
in which we vary the number of representatives kz used to approximate each
data item and the number of representatives kc produced for each section of
data, while leaving all other parameters fixed. We also produce formulas for
the cost of PMPDDP with respect to the number of data items m and the
number of attributes n.

Before we proceed further, we collect the results from the formulas in (13,
15, 24) and write the total cost of PMPDDP as:

m

(
c1γ1n log2 (kc) + γ2nkc + kckz + γ2nk2

z

+
1
3
k3

z + c2γ2
n

m
kskc(2kf − 1) + c2kz log2(2kf )

)
. (25)

We use this result when computing the formulas for each instance.

Table 3. Collected costs of PMPDDP, including the costs of obtaining the LMFR.
See Table 2 for a definition of the parameters, and Fig. 8 for the assumptions made
when writing the formulas

Operation Amortized cost

Clustering sections to obtain C c1γ1nm log2(kc)

Find distance from data points to centers γ2nmkc

Find kz closest centers mkckz

Compute best least-squares approximation m(γ2nk2
z + 1

3
k3

z)

Cluster the representation CZ using PDDP c2γ2nkskc(2kf − 1) + c2mkz log2(2kf )

Compare cost of PDDP c1γ1nm log2(kf )
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Obtaining C:
1. PDDP is used to obtain the section representatives
2. A perfectly balanced binary tree is created
3. each section has the same value of kd and kc

4. kdks = m
5. kc is an integer power of two

Obtaining Z:
6. kz � kc, so direct search for kz closest representatives

in C is less expensive than sorting
7. same value for kz is used for all sections
8. normal equations are used to obtain least-squares
9. additional O(k2

z) term from least squares is ignored
Clustering CZ:

11. PDDP is used to obtain the clustering
12. A perfectly balanced binary tree is created
13. Scatter is estimated by pre-computing the splits for all leaves
14. kf is an integer power of 2

Fig. 8. Summary of the assumptions used to obtain the formulas in Table 3

Varying kz

In this section we show the cost of PMPDDP when all parameters except kz

are fixed. This will demonstrate the effect on the overall cost of PMPDDP
when changing the number of representatives used to approximate each data
item. Since kz is independent from all other parameters, it is possible to fix
the remaining parameters to constant values.

We start by examining (25) and extracting only those components that
depend on kz. Note that while the other components may contribute a very
high cost, that cost will be fixed. The resulting formula is

m

(
(kc + c2 log2 (2kf )) kz + γ2nk2

z +
1
3
k3

z

)
. (26)

This formula indicates that there may be a strong linear component in kz

when the quantity γ2nk2
z is relatively small, as would probably be the case for

relatively low-dimension dense data sets. In the general case, since we expect
kz to be small, the square term will dominate the costs. With kz sufficiently
large, the cost will grow cubically.

Increasing kz is expensive from a memory standpoint, since each column
of Z has kz nonzero entries. Keeping kz small controls both the computation
cost and the memory footprint of the LMFR.

Varying kc

The other PMPDDP parameter we consider is the number of representatives
per section kc. We demonstrated in [317] that kc is important to clustering
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accuracy, so it is useful to know the trade-off in cost. As before, if we
only consider the elements of formula (25) that involve kc, we have the
result

m
(
c1γ1n log2 (kc) + γ2nkc + kckz + c2γ2

n

m
kskc (2kf − 1)

)
.

If we factor out the kc term, we have the result

m
(
c1γ1n log2 (kc) + kc

(
γ2n + kz + c2γ2

n

m
ks (2kf − 1)

))
. (27)

We expect that the cost of PMPDDP will increase slightly more than linearly
with kc due to the logarithmic term.

Varying n

We now consider the contribution to the cost from the number of attributes
n. Taking all the terms from (25) that involve n, we have

m
(
c1γ1n log2 (kc) + γ2nkc + γ2nk2

z + c2γ2
n

m
kskc (2kf − 1)

)
.

We can factor n from this formula with the resulting cost being

nm

(
c1γ1 log2 (kc) + γ2kc + γ2k

2
z + c2γ2

1
m

kskc (2kf − 1)
)

. (28)

From this result, we expect the cost of PMPDDP to be linear in the number
of attributes.

Varying m

The final result we consider is the cost in terms of the number of data items
m. Note that in (25), all terms inside the outermost parenthesis are dependent
on m except

c2γ2
n

m
kskc (2kf − 1) ,

since this term will be multiplied by m. With this consideration, and with all
values fixed except m, and rather than rewriting the entire formula, we can
recast (25) as

c3m + c4, (29)

where c3 and c4 encompass the appropriate parameters in (25). From this re-
sult we can expect that PMPDDP is linear in the number of data
items m.
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7 Experimental Results

In this section we show some experimental results for the PMPDDP clustering
method for both a dense and a sparse large data set. We subsampled each data
set so that we could directly compare the results of a PDDP clustering with
a PMPDDP clustering. We compare the quality of the two clusterings using
scatter and entropy as measures.

Recall from Sect. 5.1 that PMPDDP uses an estimated scatter value to
determine the cluster that is split next. To determine the effect on clustering
quality of using the estimated scatter, we include results for clustering quality
using the computed scatter. Computing the scatter required that the data
be reconstructed. To minimize the amount of additional memory, we recon-
structed 50 data points at a time. When we used the computed scatter to select
the cluster to split next, we did not precompute the splits of the leaf clusters.

The algorithms were implemented in MATLAB and the experiments were
performed on an AMD XP2200+ computer with 1 GB of memory and 1.5 GB
of swap space.

7.1 Data Sets

We used two data sets to evaluate the method: one dense and one sparse.
The dense data set was the KDD Cup 1998 data set [72], which consists of
network connection data. Since the data set was designed to test classification
algorithms, it was labeled. Connection types were either “normal” or some
kind of attack. We combined both the training and the test data into one
large data set. Categorical attributes were converted to binary attributes as
needed. Each attribute was scaled to have a mean of 0 and a variance of 1.
Post-processing, the entire data set occupied over 4 GB of memory.

The sparse data set was downloaded from the Web. Topics were selected
so that a Google search on a given topic would return at least 200 hits. We as-
sumed that the top 200 documents returned were relevant to the search topic.
Each Web page was treated as a document. Any word that only appeared in
one document was removed from the dictionary, as were all stop words. The
words were also stemmed using Porter’s stemming algorithm. Each document
vector was scaled to unit length.

The data sets are summarized in Table 4. A more in-depth description of
how the data were processed is available in [317].

7.2 Performance Measures

We used two different performance measures to evaluate the comparative qual-
ity of the clustering. Those measures were scatter and entropy.

The scatter sC of a cluster MC is defined as:

sC
def=
∑
j∈C

(xj − wC)2 = ‖MC − wCeT ‖2
F , (30)
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Table 4. Summary of the datasets used in the experiments. The KDD data set is
the KDD Cup 1998 data set from the UCI:KDD machine learning repository [72],
and the Web data were produced at the University of Minnesota

Dataset KDD Web

Number of samples (m) 4,898,431 25,508

Number of attributes (n) 122 733,449

Number of categories 23 1,733

where wC is the mean of the cluster, e is the m-dimensional vector [1 1 · · · 1]T ,
and ‖ ‖F is the Frobenius norm. For some n × m matrix A, the Frobenius
norm of A is

‖A‖F =
√√√√ ∑

1≤i≤n
1≤j≤m

a2
i,j , (31)

where ai,j is the entry in the ith row and jth column of A. A low scatter
value indicates good cluster quality. Since scatter is a relative performance
measure, it only makes sense to use the scatter to compare clusterings having
the same cardinality.

The entropy ej of cluster j is defined by:

ej
def= −

∑
i

(
c(i, j)∑
i c(i, j)

)
· log

(
c(i, j)∑
i c(i, j)

)
, (32)

where c(i, j) is the number of times label i occurs in cluster j. If all the labels
of the items in a given cluster are the same, then the entropy of that cluster
is 0. Otherwise, the entropy is positive. The total entropy for a given clustering
is the weighted average of the cluster entropies:

etotal
def=

1
m

∑
i

ei · ki. (33)

The lower the entropy, the better the quality. As with the scatter, entropy is
a relative performance measure, so the same caveats apply.

7.3 KDD Results

The KDD intrusion detection data were divided into 25 random samples. It
was only possible to compute a PDDP clustering of the data up to a combina-
tion of the first 5 samples of data. After that, the amount of memory required
for data and overhead exceeded the capacity of the computer.

The parameters and results for the KDD intrusion detection data set are
summarized in Table 5. We show the results for the combinations through the
first five pieces of data and the results for the entire data set. The clustering
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Table 5. Comparison of a PDDP clustering with a PMPDDP clustering of the KDD
data for various sample sizes. It was not possible to compute a PDDP clustering past
the largest sample size shown since the data would not fit into memory. It was not
possible to compute the scatter for PMPDDP for the entire data set, since it would
not fit into memory. Also included are results for a modified PMPDDP clustering
method, which uses the computed scatter (c.s.) rather than the estimated scatter. See
Table 2 for a definition of the parameters, and Sect. 7.1 for a description of the data

Dataset KDD

m 195,937 391,874 587,811 783,748 979,685 4,898,431

ks 5 10 15 20 25 125

kc 392 392 392 392 392 392

kz 3 3 3 3 3 3

kf 36 36 36 36 36 36

Normalized scatter values, lower is better

PDDP 3.179e − 04 3.279e − 04 3.276e − 04 3.290e − 04 3.288e − 04 Will not fit

PMPDDP 3.257e − 04 3.236e − 04 3.271e − 04 3.250e − 04 3.275e − 04 N.A.

PMPDDP c.s. 3.271e − 04 3.258e − 04 3.250e − 04 3.245e − 04 3.255e − 04 N.A.

Entropy values, lower is better

PDDP 0.127 0.130 0.129 0.124 0.120 Will not fit

PMPDDP 0.0590 0.0585 0.0546 0.120 0.114 0.113

PMPDDP c.s. 0.125 0.127 0.126 0.112 0.120 0.113

Time taken by experiments, in seconds, on XP 2200+

PDDP 39.72 89.68 140.45 204.87 282.44 Will not fit

Compute CZ 216.66 450.41 674.49 872.15 1,108.56 5,652.59

Cluster CZ 15.63 32.71 52.67 69.07 89.62 492.81

Cluster CZ c.s. 20.20 45.18 73.59 96.42 120.69 447.36

PMPDDP totals 232.29 483.12 727.16 941.22 1,198.18 6,145.40

Memory occupied by representation, in MB

M 191.2 382.4 573.6 764.9 956.2 4,780

CZ 8.24 16.48 24.72 39.00 48.75 206

quality from PMPDDP is comparable to PDDP in both the scatter and the
entropy performance measures. The memory savings are significant. The costs
are higher for PMPDDP, but the majority of the time is spent computing the
factored representation of the data. Once the factored representation is avail-
able, clusterings of different sizes can be computed relatively inexpensively.

Examining the results for the PMPDDP clustering using the computed
scatter as compared to PMPDDP using the estimated scatter, we can see
that the scatter values are similar for the two approaches. The entropy is
better for the smaller sample sizes when using the estimated scatter, but this
could be a result of some bias in the data set. A few labels are assigned to most
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of the data points, while the remaining labels are assigned to relatively few
data points. A small number of data points can move and change the entropy
results significantly. In any case, once more data are present, the advantage
in entropy values for the estimated scatter is no longer present. As such, this
anomaly probably does not represent any significant advantage in general to
using the estimated scatter. Also, we can see that the clustering times are
close enough so that there is no advantage in speed when using the estimated
scatter for this dense data set.

The entire KDD intrusion detection data set in its original representation
would occupy 4.78 GB of memory, beyond the limits of most desktop work-
stations. The factored representation of the data requires only about 206 MB
of memory for the PMPDDP parameters selected, leaving plenty of memory
space for clustering computation overhead on even a 512 MB workstation.

The time taken as the number of data items increased is shown in Fig. 9.
For this data set, PMPDDP costs scale linearly with the number of data items.
This agrees with the complexity analysis in Sect. 6.1.

7.4 Web

The Web data were divided into eight random samples. It was not possible
to compute a PDDP clustering for more than a combination of six samples
of the data, since after that point the program terminated abnormally due to
lack of swap space.

The parameters and results are shown in Table 6, including the results for
the entire data set. The PMPDDP and PDDP clusterings again have similar
quality with respect to the scatter and entropy. Note that the memory savings
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Fig. 9. Time taken for a PMPDDP clustering of the KDD data set with an increas-
ing number of data items. The parameters used in the experiments are shown in
Table 5
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Table 6. Comparison of a PDDP clustering and a PMPDDP clustering of the web
data set for various sample sizes. The entire data set would not fit into memory,
so it was not possible to perform a PDDP clustering for the entire data set. Since
the data would not fit, it was not possible to compute the scatter of PMPDDP for
the entire data set. Also included are results for a modified PMPDDP clustering
method, which uses the computer scatter (c.s.) rather than the estimated scatter.
See Table 2 for the parameter definitions and Sect. 7.1 for a description of the data

Dataset Web

m 40,688 81,376 122,064 162,752 203,440 244,128 325,508

ks 5 10 15 20 25 30 40

kc 81 81 81 81 81 81 81

kz 3 3 3 3 3 3 3

kf 200 200 200 200 200 200 200

Normalized scatter values, lower is better

PDDP 0.7738 0.7760 0.7767 0.7778 0.7789 0.7787 Will not fit

PMPDDP 0.7762 0.7792 0.7802 0.7809 0.7819 0.7829 N.A.

PMPDDP c.s. 0.7758 0.7788 0.7796 0.7800 0.7812 0.7817 0.7820

Entropy values, lower is better

PDDP 5.043 5.483 5.692 5.836 5.922 5.990 Will not fit

PMPDDP 5.168 5.624 5.843 6.004 6.094 6.175 6.869

PMPDDP c.s. 5.127 5.598 5.842 5.987 6.088 6.161 6.253

Time taken by experiments, in seconds, on an XP 2200+

PDDP 1461 2527 3421 4359 5277 6286 Will not fit

Compute CZ 5909 11,783 17,648 23,508 29,414 35,288 47,058

Cluster CZ 9174 17,654 26,278 34,565 43,591 51,992 68,416

Cluster CZ c.s. 15,192 30,208 44,908 59,634 74,542 89,614 11,9762

PMPDDP total 15,083 29,437 43,926 58,073 73,005 87,279 115,475

Memory occupied by representation, in MB

M 115.3 227.3 339.9 451.4 563.6 674.6 897.3

CZ 43.54 84.72 126.0 167.0 208.5 248.9 330.3

are not as significant as those for the dense data set. The sparse data already
use a representation which saves a considerable amount of memory. Plus, the
C matrix is considerably more dense than the original representation of the
data. This is due to the fact that the C matrix comprises cluster centroids.
A centroid of any given cluster must contain a word entry for any data point
in the cluster, which has that word as an element. Therefore, the centroid of
a cluster of sparse data is usually denser than any given item in the cluster.
The higher density also accounts for some of the additional expense incurred
during clustering, since the greater density is associated with an increase in
the number of multiplications required to obtain the principal direction of the
cluster.
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Fig. 10. Time taken for a PMPDDP clustering of the web data with an increasing
number of data items. The results are a graphical representation of the times from
Table 6

It was not possible to cluster the entire data set using the original repre-
sentation of the data, which occupied 897 MB of memory, while the LMFR at
330 MB left sufficient memory space for clustering overhead.

The comparison between clustering quality and cost between standard
PMPDDP and PMPDDP using the computer scatter is much more pro-
nounced than for the dense data. Using the estimated scatter saves a sig-
nificant amount of time during the clustering process, even though it requires
computing twice the number of splits. The scatter values when clustering using
the computed scatter are slightly better than those for the estimated scatter.
The entropy values are better as well. However, the amount of time saved
when using the estimated scatter is enough so that we would still recommend
using it over the computed scatter.

The time taken as the number of data items increased is shown in Fig. 10.
As with the KDD data set, the time taken to compute a complete PMPDDP
clustering of the web data is linear in the number of data items. This agrees
with the complexity analysis in Sect. 6.1.

8 How to Apply PMPDDP in Practice

We realize that while the experiments demonstrate that PMPDDP is a scal-
able extension of PDDP, they do not give much intuition on how to select the
parameters. There are much more extensive experiments in [317], and using
those results, we can provide some guidelines on how to apply PMPDDP in
practice.

The LMFR construction is the point where the parameter choices are most
relevant. Results indicate that even for an LMFR with the exact same memory
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footprint, minimizing the number of sections is beneficial. In other words, it is
best to process the original data in pieces which are as large as can be fit into
memory while still allowing room for overhead and room for the new matrices
being created. Realize that it is not necessary for the sections to have the
same size, so if there one some remainder data, they can be used to construct
a smaller section, with the remaining parameters adjusted accordingly.

There is a trade-off when selecting the values of kc and kz, since those are
the two user-selectable parameters that control the size of the LMFR. The
experimental results indicated that increasing kz to numbers above 7 or 8
does not increase clustering quality, and values of 3–5 provide good results in
most cases.

The single most important parameter is kc, the number of representatives
produced per section. Both the accuracy of the clustering and the approx-
imation accuracy of the LMFR are strongly influenced by the value of kc.
Therefore, kc should be chosen such that it will maximize the memory foot-
print of the global LMFR.

Using the above information, we recommend starting with a small value for
kz and then selecting kc to maximize memory use. If the data set in question
is sparse, it would be advisable to test the parameter choice on a small piece
of data to determine the increase in density, so that some estimate of the final
memory footprint of the LMFR could be obtained.

Note that applying the above technique may produce an LMFR, which
is much larger than the size necessary to obtain good clustering quality. For
instance, the experimental results in Sect. 7.3 were good with an LMFR that
did not occupy as much memory as possible. However, it is difficult to know
beforehand how much reduction a given data set can tolerate. The optimum
memory reduction, if there is such a result, would be strongly data depen-
dent. Therefore, it is difficult to do other than suggest making the LMFR as
large and, correspondingly, as accurate a representation of the original data
as available memory allows.

9 Conclusions

In this chapter we presented a method to extend the PDDP clustering method
to data sets that cannot fit into memory at once. To accomplish this, we
construct an LMFR of the data. The LMFR transparently replaces the original
representation of the data in the PDDP method. We call the combination of
constructing an LMFR and clustering it using PDDP PMPDDP.

The LMFR is comprised of two matrices. The LMFR is computed in-
crementally using relatively small pieces of the original data called sections.
Each section of data is clustered, and the centroids of the clusters form the
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first matrix Cj . The centroids are then used to construct a least-squares ap-
proximation to each data point. The data loadings from the least-squares
approximation are used to construct the second matrix Zj . Memory is saved
since only a small number of centroids are used to approximate each data
item, making Z very sparse. Z must be represented in a sparse matrix format
in order to realize the memory savings. Once a Cj and a Zj are available for
each section, they are assembled into a global representation of all the data,
CZ. The matrices CZ can then be used in place of the original representation
of the data. The product CZ is never computed explicitly, since the prod-
uct would take up at least as much space as the original data. Unlike many
other approximating techniques, the LMFR provides a unique representation
of each data item.

We provided a complexity analysis of the cost of constructing the LMFR.
This provides a useful guide when determining how to choose the parameters
if the time of computation is critical. In the process, we showed that PDDP is
theoretically linear in the number of data items and the number of attributes,
which has been shown to be the case experimentally.

We then described the PMPDDP clustering algorithm. PMPDDP uses the
LMFR in place of the original data to obtain a clustering of the data. Since
each original data item has a corresponding column in the LMFR, mapping the
clustering of the LMFR to the original data is trivial. Therefore, a clustering
of the LMFR is a clustering of the original data.

PDDP is uniquely suited to clustering the LMFR since PDDP does not
require similarity measures to determine the clustering. Therefore, no data
need to be reconstructed and no full or even partial products of CZ are
computed. To avoid reconstructing the data, an estimate of the scatter is
used in place of the computed scatter when determining the cluster in the
PDDP tree that is split next.

With the complexity analysis, we showed PMPDDP is linear in the number
of data items and the number of attributes. Thus, PMPDDP extends PDDP
to large data sets while remaining scalable.

Next, we provided some experimental results. The experiments demon-
strated that it is possible to produce a PMPDDP clustering which has quality
comparable to a PDDP clustering while saving a significant amount of mem-
ory. Therefore, it is possible to cluster much larger data sets than would
otherwise be possible using the standard PDDP method. Additional data sets
were shown to be clustered successfully using PMPDDP in [317].

We also showed the effect of replacing the estimated scatter, as used in
PMPDDP, with the computed scatter, when determining the cluster to be
split next. For the dense data set, the difference was neutral with respect
to clustering quality and clustering time. However, for the sparse data set,
a significant amount of time can be saved during clustering by using the
estimated scatter. Clustering quality was slightly inferior, but the reductions
in clustering times more than made up for the differences in clustering quality.
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Finally, we described how we would expect PMPDDP would be applied
by a casual user. While we cannot guarantee that our suggestions provide an
optimal balance between memory used and clustering quality, we believe that
using our suggestions would provide the best clustering quality obtainable
considering the amount of memory available on the workstation being used.
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Clustering with Entropy-Like k-Means
Algorithms

M. Teboulle, P. Berkhin, I. Dhillon, Y. Guan, and J. Kogan

Summary. The aim of this chapter is to demonstrate that many results attributed
to the classical k-means clustering algorithm with the squared Euclidean distance
can be extended to many other distance-like functions. We focus on entropy-like
distances based on Bregman [88] and Csiszar [119] divergences, which have pre-
viously been shown to be useful in various optimization and clustering contexts.
Further, the chapter reviews various versions of the classical k-means and BIRCH
clustering algorithms with squared Euclidean distance and considers modifications
of these algorithms with the proposed families of distance-like functions. Numerical
experiments with some of these modifications are reported.

1 Introduction and Motivation

The problem of clustering can be briefly described as follows: partition a
given collection of objects into disjoint subcollections (called clusters) so that
the objects in a cluster are more similar to each other than to those in other
clusters. The number of clusters, often denoted by k, also has to be determined.
Clustering techniques are used to discover natural groups in data sets, and
to identify abstract structures that might reside there, without having any
background knowledge of the characteristics of the data. They have been used
in a variety of areas including: computer vision, VLSI design, data mining,
text mining, bioinformatics, Web mining, and gene expression analysis. The
importance and interdisciplinary nature of clustering is evident through its
vast literature. For a recent state-of-the-art review on clustering, see, e.g.,
Jain et al. [245], Mishra and Motwani [339], and Berkhin in Chap. 2 in this
book and references therein.

A large class of clustering techniques attempt to partition the data while
optimizing an associated objective function. A common feature of the most
basic optimization formulation of clustering is that the problem is nonconvex
and often nonsmooth, thus falling into one of the most difficult areas of the
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optimization field. A popular clustering technique is the k-means algorithm
and many of its modifications and refinements (see, for example, [131, 136,
144, 166, 277, 323]). In fact, this algorithm is a local search optimization-type
algorithm, or, more precisely, a gradient-type method (see, e.g., [67]) when
appropriately formulated.

The aim of this chapter is to demonstrate that many results attributed
to the classical k-means clustering algorithm with the squared Euclidean dis-
tance can be extended with many other distance-like functions, see Sect. 2 and
Sect. 3. A step in this direction has already been made by, for example, Tishby
et al. [421], Dhillon et al. [134], Kogan et al. [279], Kogan et al. [280,282], and
Banerjee et al. [46, 47].

We focus on entropy-like distances based on Bregman [88] and Csiszar [119]
divergences, which have already been shown to be quite useful in various op-
timization contexts (see, for instance, Bregman [88], Censor and Lent [101],
Censor and Zenios [102], and references therein for the former, and Teboulle
[415–417] and references therein for the latter). The lack of symmetry with
respect to the vector arguments of these distance-like functions (as opposed
to the classical squared Euclidean distance) allows for more flexibility in the
formulation of clustering problems. A recent interesting study in that direc-
tion is the work of Banerjee et al. [46,47] where the authors have derived the
cluster “centroids” by minimizing a sum of distances based on Bregman di-
vergences, but with respect to the second argument of the Bregman distance
function. This allows the authors to produce a remarkable result despite the
nonconvexity of the Bregman distance with respect to its second argument,
see Sect. 4 for details. In this chapter we treat the analysis of the minimization
problem with respect to either one of the vector arguments, pointing out the
differences/similarities in the resulting derived centroids. This allows one to
consider k-means clustering algorithms within a unified framework and paves
the way for the development of new clustering algorithms. In particular, these
algorithms are capable of handling non-negative data with a wide range of
choices for the distance measure to accommodate a variety of specific prob-
lems. This leads to several new types of cluster centers (or centroids), see
Sect. 4.

In Sect. 5 we concentrate on the batch version of the algorithm [166],
the incremental version [144], and the combination of these two algorithms
[219, 277, 458]. The section also discusses a strategy to handle large datasets
by cutting an original dataset into small dense clusters and handling each
small cluster as a single “cluster-point.” This approach leads to a significant
reduction of the dataset size. The idea is borrowed from [459] (which uses the
squared Euclidean distance), and we call the resulting algorithm the “BIRCH
type” algorithm. Experimental results demonstrating the usefulness of our
approach for various datasets and choices of entropy-like distances are given
in Sect. 6.



Clustering with Entropy-Like k-Means Algorithms 129

2 An Optimization Formulation of Clustering Problems

There are several ways to formulate a clustering problem. We start with one
of the most basic formulation, which allows us to set up notations and termi-
nology.

Let A = {a1, . . . , am} be a set of points in a subset S of an n-dimensional
Euclidean space IRn (i.e., ai = (ai

1, . . . , a
i
n)T , i = 1, . . . , m). Consider a parti-

tion Π = {π1, . . . , πk} of the set, i.e.,

π1 ∪ · · · ∪ πk = {a1, . . . , am}, πi ⊆ A, and πi ∩ πj = ∅ if i �= j.

Given a real valued function q whose domain is a subset of {a1, . . . , am},
the quality of the partition Π is given by Q(Π) = q(π1) + · · · + q(πk). The
problem is to identify an optimal partition Πo = πo

1∪···∪πo
k, i.e., the one that

minimizes Q(Π) = q(π1)+ · · ·+ q(πk). Often the function q is associated with
a “dissimilarity measure,” or a distance-like function d(u, v) that satisfies the
following basic properties:

d(u, v) ≥ 0 ∀(u, v) ∈ S and d(u, v) = 0 ⇐⇒ u = v.

We will call d(·, ·) a distance-like function, since we are not necessarily asking
for d to be either symmetric or to satisfy the triangle inequality.

To describe the relation between q and d we define a centroid x of a cluster
π by

x = x(π) = arg min
y∈S⊂IRn

∑
a∈π

d(y, a). (1)

Note that since d(·, ·) is not necessarily symmetric, by reversing the order of
the variables we could also define a centroid by minimizing with respect to
the second argument; this i.e., further discussed in Sect. 4.

If q(π) is defined as
∑
a∈π

d(x(π), a), then centroids and partitions are asso-

ciated as follows:

1. For each set of k centroids
{
x1, . . . , xk

}
one can define a partition

{π1, . . . , πk} of the set
{
a1, . . . , am

}
by:

πi =
{
aj : d(xi, aj) ≤ d(xl, aj) for each l �= j

}
(break ties arbitrary).

2. Given a partition {π1, . . . , πk} of the set
{
a1, . . . , am

}
, one can define the

corresponding centroids
{
x1, . . . , xk

}
by:

xi = x (πi) = arg min
x∈S

∑
a∈πi

d(x, a). (2)
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Note that the spherical k-means clustering algorithm introduced by Dhillon
and Modha [136] is covered by this model. When the minimization problem
in (2) is convex, the above algorithm has been coined as the convex k-means
algorithm in [341].

While the discrete clustering minimization problem

min Q(Π) where Q(Π) =
k∑

i=1

q(πi) =
k∑

i=1

∑
a∈πi

d(xi, a)

is stated here in terms of partitions, one should keep in mind that a partition
is always associated with a set of centroids. In the beginning of the chapter we
concentrate on centroids (see Sect. 5 where we focus on partitions) and state
the continuous clustering minimization problem as follows:

(C) min
x1,...,xk∈S

f(x1, . . . , xk) where f(x1, . . . , xk) =
m∑

i=1

min
1≤l≤k

d(xl, ai).

The nonsmooth optimization formulation (C) of the k-means clustering prob-
lem leads to an algorithm [418] that recovers the deterministic annealing pro-
cedure introduced by Ross et al. [373].

We now indicate two of the most common and popular choices of d. The
first choice is with S = IRn and d being an arbitrary norm ‖ · ‖ in IRn, in
which case the objective function of problem (C), which for convenience will
be called (C1), becomes

(C1) min
x1,...,xk∈IRn

f(x1, . . . , xk) where f(x1, . . . , xk) =
m∑

i=1

min
1≤l≤k

‖xl − ai‖.

The second popular choice of d is the squared Euclidean norm, S = IRn, that
leads to problem (C2):

(C2) min
x1,...,xk∈IRn

f(x1, . . . , xk) where f(x1, . . . , xk) =
m∑

i=1

min
1≤l≤k

‖xl − ai‖2.

The problem (C1) with an L1 norm and the problem (C2) with a squared
L2 norm lead to two of the most popular clustering algorithms called the
k-median algorithm and the k-means algorithm, respectively (see, e.g., [87]).

In Sect. 3 we recall some basic results and definitions of distance-like
functions.

3 Distance-Like Functions

A specific choice of a distance-like function is dictated by an application at
hand. Often the data set resides in a prescribed closed convex subset S of
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IRn, most often S is the non-negative octant, or the product of real inter-
vals (see, e.g., [60, 134, 136, 393]). To handle such situations, we focus on two
well-established distance-like functions based on ϕ-divergences and Bregman
distances. These are generated by the choice of an appropriate convex kernel
function. For a particular choice of kernels, both measures coincide with the
so-called Kullback–Leibler (KL) divergence or relative entropy. Accordingly,
we call these Entropy-like distances. The purpose of this section is to pro-
vide a brief review on these objects and recall some of their basic and useful
properties. Our terminology uses standard notions of convex analysis that can
be found in the classical book of Rockafellar [372] (for notations/results not
explicitly given here, the reader is referred to [372]).

3.1 ϕ-Divergences

Consider a collection of vectors {a1, . . . , am} in the n-dimensional non-
negative octant S = IRn

+. A natural “distance” between vectors is provided
by the so-called class of ϕ-divergence measures, which was introduced by
Csiszar [119] as a generalized measure of information on the set of probability
distributions to measure the closeness between two probability measures. That
is, Csiszar divergences generalize the concept of relative entropy. For more re-
sults on convex statistical distances see, for instance, the monograph [315]
and references therein. Here we need not restrict ourselves to the probability
setting (as is often the case in Information Retrieval), and we consider the
more general case of arbitrary vectors in the non-negative octant (our pre-
sentation follows Teboulle [415–417], where more results and details on using
ϕ-divergences in various contexts can be found).

First we define the class of functions from which the distance-like functions will
be derived. Let ϕ : IR → (−∞,+∞] be a proper closed (lower semicontinuous,
for short l.s.c.) function.1 We denote its effective domain by

dom ϕ := {t : ϕ(t) < +∞}.

We further assume that dom ϕ ⊆ [0,+∞), ϕ(t) = +∞ when t < 0 and ϕ
satisfies the following:
(i) ϕ is twice continuously differentiable on int(dom ϕ) = (0,+∞),
(ii) ϕ is strictly convex on its domain,
(iii) lim

t→0+
ϕ′(t) = −∞,

(iv) ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0.

1Recall that ϕ is called proper if ϕ(t) > −∞ for all t and dom ϕ �= ∅, and l.s.c.
(closed) if lim inf

s→t
ϕ(s) = ϕ(t) (the epigraph of ϕ is a closed set).
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We denote by Φ the class of functions satisfying (i)–(iv). Given ϕ ∈ Φ, for
x, y ∈ IRn we define dϕ(x, y) by

dϕ(x, y) =
n∑

j=1

yjϕ(xj/yj). (3)

A few words about these specific assumptions are in order. Since we will be
interested in minimization problems involving dϕ, assumptions (i)–(ii) ensure
the existence of global minimizers, assumption (iii) enforces the minimizer to
stay in the positive octant, and finally (iv) is just a normalization, allowing
us to handle vectors in IRn

+ (rather than probabilities).
The functional dϕ enjoys the required basic property of a distance-like func-
tion, namely one has:

∀(x, y) ∈ IRn × IRn dϕ(x, y) ≥ 0 and dϕ(x, y) = 0 iff x = y.

Indeed, the strict convexity of ϕ and (iv) imply:

ϕ(t) ≥ 0, and ϕ(t) = 0 iff t = 1.

Moreover, it can be easily verified that dϕ is jointly convex in (x, y).

Example 1. Typical interesting examples of ϕ include:

ϕ1(t) = t log t − t + 1, dom ϕ = [0,+∞).

ϕ2(t) = − log t + t − 1, dom ϕ = (0,+∞).

ϕ3(t) = (
√

t − 1)2, dom ϕ = [0,+∞).

The first example leads to the so-called relative entropy type distance of KL
defined on IRn

+ × IRn
++ by

dϕ1(x, y) ≡ KL(x, y) :=
n∑

j=1

xj log
xj

yj
+ yj − xj . (4)

Note that for unit L1 norm vectors x and y with non-negative coordinates∑n
j=1 xj =

∑n
j=1 yj = 1, and the function dϕ1(x, y) becomes the standard

KL divergence. Clustering results with the standard KL divergence have been
recently reported by Berkhin and Becher [58], and Dhillon et al. [134].

By adopting the convention 0 log 0 ≡ 0, the KL functional can be contin-
uously extended on IRn

+ × IRn
++, i.e., it admits vectors with zero entries in its

first argument (in text mining applications xj = yj = 0 corresponds to the
case when a word/term does not occur in two documents and motivates the
convention 0 log (0/0) ≡ 0). It turns out that KL remains one of the most
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fundamental distances, even when working and analyzing problems involving
ϕ-divergences (see [417] for more details and results, and also Sect. 3.2).

The second example ϕ2 also yields the KL distance but with reversed order
of variables, i.e.,

dϕ2(x, y) ≡ KL(y, x) =
n∑

j=1

yj log
yj

xj
+ xj − yj , (5)

and the third choice gives the so-called Hellinger distance:

dϕ3(x, y) =
n∑

j=1

(
√

xj −√
yj)2

(additional examples can be found in [416]).

Note that the squared Euclidean distance cannot be recovered through the ϕ-
divergence. Motivated by the analysis of a class of optimization algorithms in
a recent work, Auslender et al. [35] have suggested a homogeneous functional
dϕ of order 2 defined on IRn

++ × IRn
++ by:

d̂ϕ(x, y) =
n∑

j=1

y2
j ϕ(xj/yj). (6)

A particularly useful example of d̂ϕ is provided with the choice

ϕ4(t) =
ν

2
(t − 1)2 + µ(t − log t − 1), dom ϕ = (0,+∞), (7)

where ν, µ are some positive parameters (see Auslender and Teboulle [34] for
properties and applications). It leads to an interesting combination of the
classical squared Euclidean distance with an additional new term, which can
be interpreted as a “penalization” for positive data, through the log term.
When µ → 0 the squared Euclidean distance is recovered.

3.2 Bregman Distance

Let ψ : IRn → (−∞,+∞] be a closed proper convex function. Suppose that ψ
is continuously differentiable on int(dom ψ) �= ∅. The Bregman distance (also
called “Bregman divergence”) Dψ : dom ψ× int(dom ψ) → IR+ is defined by

Dψ(x, y) = ψ(x) − ψ(y) − 〈x − y,∇ψ(y)〉, (8)

where 〈·, ·〉 denotes the inner product in IRn and ∇ψ is the gradient of ψ.

This distance-like measure was introduced by Bregman [88]. It essentially
measures the convexity of ψ, since Dψ(x, y) ≥ 0 if and only if the gradient
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inequality for ψ holds, i.e., if and only if ψ is convex. Thus, Dψ provides a
natural distance-like measure, and with ψ strictly convex one has Dψ(x, y) ≥ 0
and Dψ(x, y) = 0 iff x = y.

Note that Dψ(x, y) is not a distance (it is not symmetric and it does not
satisfy the triangle inequality). With the special choice dom ψ = IRn and
ψ(x) = 1/2‖x‖2, one obtains Dψ(x, y) = 1/2‖x − y‖2. More examples are
given below.

In most applications, and in particular in optimization contexts, as has
been already observed by Teboulle [415], the useful setting for Bregman dis-
tance is to consider convex functions of Legendre type, a concept introduced
by Rockafellar [372]. Thus, we assume that the kernel function ψ is a closed
proper strictly convex function, which is essentially smooth [372, p. 251]:

Definition 1. A closed proper convex function ψ : IRn → (−∞,+∞] is es-
sentially smooth if it satisfies the following three conditions:

(a) C := int(dom ψ) �= ∅;
(b)ψ is differentiable on C;
(c) lim

i→∞
‖∇ψ(xi)‖ = +∞, for every sequence {xi} ∈ C converging to a bound-

ary point x of C.

Note that as for ϕ-divergences, the property (c) will enforce a minimizer of
(1) with Dψ as a distance-like function to stay in the interior of dom ψ. The
class of functions such that C is an open convex set and ψ is a strictly convex
function satisfying (a), (b), and (c) are called convex function of Legendre
type [372, p. 258]. This class of functions is denoted by L(C).

We recall that the convex conjugate of ψ : IRn → (−∞ + ∞] is defined by

ψ∗(y) = sup
x∈IRn

{〈x, y〉 − ψ(x)}

and is a closed proper convex function.

A smooth convex function on IRn (i.e., finite and differentiable everywhere
on IRn) is in particular essentially smooth. From the results of [372, Sect. 26],
it follows that for ψ ∈ L(C), the conjugate ψ∗ of ψ is also in L(C∗), where
C∗ = int(dom ψ∗) and the following useful relationships hold:

∇ψ∗ = (∇ψ)−1, (9)

ψ∗(∇ψ(z)) = 〈z,∇ψ(z)〉 − ψ(z). (10)

These results help to compute centroids when distance functions are generated
by Bregman divergences (see Sect. 4.3).

Example 2. With C = IRn
++ and ψ(x) :=

∑n
i=1 xi log xi − xi (with the con-

vention 0 log 0 = 0), we obtain the KL relative entropy distance
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Dψ(x, y) =
n∑

i=1

xi log
xi

yi
+ yi − xi ∀ (x, y) ∈ IRn

+ × IRn
++. (11)

By reversing the order of variables in Dψ, i.e.,

Dψ(y, x) = ψ(y) − ψ(x) − 〈y − x,∇ψ(x)〉 (12)

(compare with (8)) using the kernel

ψ(x) =
ν

2
‖x‖2 + µ

[
n∑

i=1

xi log xi − xi

]
, (13)

we obtain

Dψ(y, x) =
ν

2
‖y − x‖2 + µ

n∑
i=1

[
yi log

yi

xi
+ xi − yi

]
. (14)

More discussion on this example is presented in Sect. 4.

Example 3. Note that the choice ψ(x) = −∑n
i=1 log xi (known as the Burg

entropy) leads to the distance

Dψ(x, y) =
n∑

i=1

− log
xi

yi
+

xi

yi
− 1.

We give now some other examples, taken from [415, p. 678].

Example 4. Most of the useful Bregman distances are separable (except for
the trivial extension of the squared Euclidean distance on IRn, which can be
derived with the weighted norm ψ(x) = xT Wx, with W positive definite).
Thus we let K : IR → (−∞,+∞] and

ψ(x) =
n∑

i=1

K(xi). (15)

In each of the examples below ψ is a closed proper strictly convex and
essentially smooth function. In the first two examples ψ is cofinite, i.e.,
dom ψ∗ = IRn. In the last two examples one has 0 ∈ int(dom ψ∗). In each case,
we give the conjugate function ψ∗ and the corresponding induced Bregman
distance. For the Cartesian product of n intervals (a, b) we use the notation
(a, b)n.

1. K(t) = t log t − t if t ≥ 0, K(t) = ∞ if t < 0. Then [372, p. 105],
ψ∗(y) =

∑n
i=1 eyi and as already mentioned Dψ recovers the KL relative

entropy distance
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Dψ(x, y) =
n∑

i=1

xi log
xi

yi
+ yi − xi ∀ (x, y) ∈ IRn

+ × IRn
++. (16)

2. K(t) = −√
1 − t2 if |t| ≤ 1, K(t) = ∞ if |t| > 1. Then [372, p. 105],

ψ∗(y) =
∑n

i=1

√
1 + y2

i and

Dψ(x, y) =
n∑

i=1

1 − xiyi√
1 − y2

i

−
√

1 − x2
i on [−1, 1]n × (−1, 1)n.

3. Burg entropy, K(t) = − log t if t > 0, K(t) = ∞ if t ≤ 0. The conjugate
function is given by

ψ∗(y) =

⎧⎪⎨
⎪⎩

n∑
i=1

− log(−yi) − 1 if − y ∈ IRn
++,

+∞ otherwise

and, as already mentioned in Example 3, the distance is

Dψ(x, y) =
n∑

i=1

− log
xi

yi
+

xi

yi
− 1 ∀ (x, y) ∈ IRn

++ × IRn
++.

4. For α ∈ (0, 1), consider the family of functions

Kα(t) =

{
(αt − tα)/(1 − α) if t ≥ 0

∞ otherwise.

For y ∈ dom ψ∗ = (−∞, β]n, where β > 0 and β − α = αβ one can easily
compute ψ∗

β(y) =
∑n

i=1(1− yi/β)−β . The corresponding distance is given
by

Dα(x, y) =
n∑

i=1

yα−1
i (yi + βxi) − (β + 1)xα

i on IRn
+ × IRn

++.

The particular choice α = 1/2, leads to the distance

D 1
2
(x, y) =

n∑
i=1

(
√

xi −√
yi)2√

yi

5. For

K(t) =

{
t log t − (1 + t) log(1 + t) + (1 + t) log 2 if t ≥ 0

∞ otherwise
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the conjugate ψ∗ and its domain are given by

ψ∗(y) = −
n∑

i=1

log(2 − eyi) and dom ψ∗ = (−∞, log 2)n.

The corresponding distance is given by

Dψ(x, y) =
n∑

i=1

xi log
xi

yi
− (1 + xi) log

(
1 + xi

1 + yi

)
on IRn

+ × IRn
++.

Remark 1. It can be verified that the ϕ-divergence coincides with the separable
Bregman distance, if and only if the corresponding kernel for both distances
is the entropy kernel

ϕ(t) = t log t − t + 1, i.e., with ψ(x) =
n∑

i=1

ϕ(xi).

In this case one has Dψ(x, y) = dϕ(x, y), and hence in both cases the resulting
distance is the KL divergence.

We end this section by mentioning a simple but key property satisfied by
the Bregman distance and revealed in [107]. This property plays a crucial
role in the analysis of optimization problems (applications to clustering are
outlined in Sect. 4, Example 9). This identity is called the three point identity
as it appears to be a natural generalization of the quadratic identity valid
for the Euclidean norm (i.e., of the law of cosines), and follows by direct
substitution using (8).

Lemma 1. [107, Lemma 3.1] For any three points a, b ∈ int(dom ψ), and
c ∈ dom ψ the following identity holds true

Dψ(c, b) − Dψ(c, a) = Dψ(a, b) + 〈∇ψ(a) −∇ψ(b), c − a〉. (17)

Unfortunately, such an identity does not hold for ϕ-divergences, yet some
related useful inequalities do hold, see in particular [35,417].
We now use the above framework to consider the k-means clustering type
algorithms within this unified view point.

4 Entropic Means and k-Means Type Algorithms

In this section we state the batch k-means clustering algorithm with a general
distance-like function d and derive formulas for centroids for various specific
choices of d.
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4.1 Batch k-Means Algorithm

We denote the standard simplex in IRk by ∆, i.e.,

∆ =

⎧⎨
⎩w ∈ IRk : wj ≥ 0,

k∑
j=1

wj = 1

⎫⎬
⎭ .

Given an entropy-like distance d, the batch k-means like clustering algorithm
can be defined as follows.

Algorithm 1 (Batch k-means clustering algorithm)
Let {a1, . . . , am} be the set of points in S to be clustered, and let {xl(0) ∈ S :
l = 1, . . . , k} be the k initial centroids.

Step 0 Set t = 0.
Step 1 For i = 1, . . . , m solve

wi(t) = argmin
w∈∆

k∑
l=1

wld(xl(t), ai).

Step 2 Update the cluster centers by solving

(
x1(t + 1), . . . , xk(t + 1)

)
= argmin

x1,...,xk∈S

{
m∑

i=1

k∑
l=1

wi
l(t)d(xl, ai)

}
.

Step 3 If (stopping criterion fails) then
increment t by 1, and go to Step 1 above.

Step 4 Stop.

Step 1 is trivially solved. For each i = 1, . . . , m, let l(i) = argmin
1≤l≤k

d(xl(t), ai),

breaking ties arbitrarily. The optimal wi(t) is simply given by wi
l(i)(t) = 1 and

wi
l(t) = 0,∀l �= l(i). It is not unusual to have wi

l(t) = 0 for some l ∈ {1, . . . , k}
and each i = 1, . . . , m (empty cluster l). In such a case the procedure can
be restarted with a different initial partition. Another way to avoid empty
clusters is to use the incremental version of the algorithm given in Sect. 5.2.

Example 5. (The quadratic case). Suppose that S = IRn and d(x, y) = 1
2‖x −

y‖2. Then, Step 2 is solved by equating to zero the gradient of the objective
function with respect to x1, . . . , xk. This yields immediately the arithmetic
mean formula

xl(t + 1) =

m∑
i=1

wi
l(i)(t)a

i

m∑
i=1

wi
l(i)(t)

.
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From this, it is clear that the mechanism of the k-means algorithm can be
applied the same way to problems with constraints S = IRn

+ by using the
entropy-like distance functions given in Sect. 3. Indeed, Step 1 remains un-
changed while Step 2 (with d smooth enough that satisfies the gradient prop-
erties, i.e., with d(·, a) essentially smooth, the constraints are automatically
eliminated, and the minimizer belongs to IRn

++) requires to solve for xl an
equation of the form

m∑
i=1

wi
l(i)(t)∇xld(xl, ai) = 0.

It turns out that for the distance-like functions proposed in Sect. 3, this equa-
tion can also be solved analytically for various choices of the kernels ϕ, ψ.
In fact due to the structure of the equation given here, and the separability
involved in the examples of entropy-like distances, it is enough to consider the
scalar case, namely to solve a scalar equation of the form (with some abuse
of notations):

m∑
i=1

wid
′(x, ai) = 0, (where d′(x, ai) denotes the derivative with respect to x).

This reduces the centroid computations to the so-called entropic means of
Ben-Tal et al. [56], which we now briefly recall.

4.2 Characterization of Means

Ben-Tal et al. [56] have shown how to generate means as optimal solutions
of a minimization problem with a “distance” function as objective. Let a =
(a1, . . . , am) be given strictly positive numbers and let w = (w1, . . . , wm) be
given weights, i.e.,

∑
wi = 1, wi > 0, i = 1, . . . , n.

The mean of (a1, . . . , an) is defined as the value of x for which the sum
of distances from x to each ai (denoted “dist”(x, ai)) is minimized, i.e., the
mean is the optimal solution of

(E) min
{∑

wi“dist”(x, ai) : x ∈ IR+

}
.

The notation “dist”(α, β) refers here to some measure of distance between
α, β > 0, which must satisfy

“dist”(α, β) = 0, if α = β and “dist”(α, β) > 0, if α �= β.

Adopting the ϕ-divergence we define the distance from x to ai by

“dist”(x, ai) := dϕ(x, ai) = aiϕ(x/ai) (18)

for each i = 1, . . . , n. The optimization problem (E) is now
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(Edϕ
) min

{
m∑

i=1

wiaiϕ

(
x

ai

)
: x ∈ IR+

}
,

and the resulting optimal solution denoted xϕ(a) := xϕ(a1, . . . , am) is called
the entropic mean of (a1, . . . , an), and is obtained by solving:

m∑
i=1

wiϕ
′
(

x

ai

)
= 0. (19)

It is shown in [56] that the entropic mean satisfies the basic properties of a
general mean and that all classical means as well as many others are special
cases of entropic means.

Example 6. The choice of ϕ(t) = 1/(p − 1)(t1−p − p) + t in (E) leads to the
so-called mean of order p,

xp(a) =

(
m∑

i=1

wia
p
i

)1/p

.

The means of order 1, 1
2 , 0, which are the arithmetic mean, the root mean

square, and the geometric mean can be characterized by choosing the kernels

− log t + t − 1, 1 − 2
√

t + t, and t log t − t + 1,

respectively. Less popular means like the Lehmer mean

xL(a) =

m∑
i=1

wia
p
i

m∑
i=1

wia
p−1
i

and the Gini mean:

xG(a) =

⎛
⎝
∑

wia
s
i∑

wia
r
i

⎞
⎠

1
s−r

for s ≥ 0 > r or s > 0 ≥ r.

can be obtained by solving problem (E) with

ϕL(t) =
t2−p

2 − p
− t1−p

1 − p
+

1
(2 − p)(1 − p)

and

ϕG(t) =
t1−r − 1

1 − r
− t1−s − 1

1 − s
,

respectively. These results can also be extended to derive entropic means for
random variables, see [56] for more details.
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Likewise, adopting the Bregman distance

“dist”(α, β) = Dψ(α, β) := ψ(α) − ψ(β) − (α − β)ψ′(β), (20)

one has to solve

(EDψ
) min

{
m∑

i=1

wiDψ(x, ai) : x ∈ dom ψ

}
.

Substituting Dψ in the objective function of (EDψ
) we have to solve (since

the ai are given numbers) the convex minimization problem:

min

{
ψ(x) − x

m∑
i=1

wiψ
′(ai) : x ∈ dom ψ

}
.

Under the set-up of Sect. 3.2 (i.e., recall that ψ′(t) → −∞ as t → t̄ a boundary
point of dom ψ), one has x̄ψ := x̄ψ(a) solves (EDψ

) if and only if

ψ′(x̄ψ) =
m∑

i=1

wiψ
′(ai). (21)

Since ψ′ is continuous and strictly increasing on int(dom ψ), it follows that
there is a unique x̄ψ solving (21) given by

x̄ψ(a) = (ψ′)−1

{
m∑

i=1

wiψ
′(ai)

}
, (22)

where (ψ′)−1 denotes the inverse function of ψ′, which exits under our as-
sumptions on ψ (cf. Sect. 3.2). Hence with ψ′ := h, h is strictly monotone and
we have characterized the so-called generalized mean of Hardy, Littlewood,
and Polya (HLP) [220]:

x̄h(a) = h−1

{
m∑

i=1

wih(ai)

}
. (23)

For more details, we refer the reader to [56].

4.3 Centroid Computation: Examples

Given the separable structure of the divergences (see (15) and Example 4),
computations of centroids in the multidimensional case follow straightforward
from results presented earlier. For the ϕ-divergences we have given a number
of interesting examples that can be adapted to produce the corresponding
centroids.
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For the case of Bregman distances, the formula is explicitly given by (22), and
can be used right away as long as we have a formula for (ψ′)−1 = (ψ∗)′ (see
(9)), which is the case for all the kernels given in Example 4.

We complete this section by mentioning three more examples of particular
interest.

Example 7. First, consider the second-order divergence (see (6)) that can also
be used in problem (E). In this case the optimality condition

∇x

(
m∑

i=1

wia
2
i ϕ(x/ai)

)
= 0

yields
m∑

i=1

wiaiϕ
′(x/ai) = 0.

Using the kernel

ϕ4(t) =
ν

2
(t − 1)2 + µ(− log t + t − 1),

which was introduced in Sect. 3.1 we obtain the unusual mean:

xµ,ν =
(ν − µ)E(A) +

√
(ν − µ)2E2(A) + 4µνE(A2)

2ν
, (24)

where E(A) :=
∑m

i=1 wiai, E(A2) :=
∑m

i=1 wia
2
i . The quantities E(A) and

E(A2) can be interpreted as the first (mean) and second moments of the
random variable A with Prob {A = ai} = wi. The limiting case µ → 0 recovers
the standard weighted arithmetic mean used in the k-means algorithm with
the squared Euclidean distance.

Example 8. Now consider a regularized φ-divergence distance, namely a dis-
tance of the form

dR(x, y) :=
ν

2
‖x − y‖2 + dϕ(x, y)

with ϕ(t) = ϕ2(t) = − log t + t − 1 (note that this is no more a second-
order homogeneous distance). A simple computation shows that the resulting
mean is just the weighted arithmetic mean. This of course should not be too
surprising, since the above is a positive linear combination of two distances,
each of which has been shown previously to yield the arithmetic mean. Indeed,
recall from Sect. 3.1 that for ϕ2, the resulting distance is just KL(y, x) (i.e.,
KL divergence with reversed order of variables). The joint convexity of the
ϕ-divergence, allows to reverse the order of the variables, or likewise to use a
kernel ϕ̂(t) := tϕ(1/t), e.g., with ϕ(t) = t log t − t + 1, one has ϕ̂(t) = ϕ2(t).
Alternatively, with ψ(t) = νt2/2 + t log t − t + 1, one can write dR(x, y) =
Dψ(y, x).
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This example raises the natural question: “what happens with Bregman dis-
tances when the order of the variables is reversed?” Indeed, since a Bregman
distance is not necessarily symmetric we can get a different centroid when
minimizing with respect to the second argument. This approach has been
recently adopted in [46, 47] who have provided the following interesting and
somewhat surprising answer.

Example 9. When reversing the order of the variables in a Bregman distance,
the resulting function to be minimized is, in general, not necessarily convex
in the second argument (except for the trivial choices ψ(t) = t2/2 and ψ(t) =
t log t − t or/and by imposing further conditions on ψ, which unfortunately
preclude the use of the interesting examples), i.e., one has to solve in general
the nonconvex problem

min

{
m∑

i=1

wiDψ(ai, x) : x ∈ int(dom ψ)

}
. (25)

However, even though the problem (25) is nonconvex, it has been shown by
Banerjee et al. [46] that the global minimizer of (25) is always the standard
weighted arithmetic mean. This can be seen as follows. Due to Lemma 1, and
the fact that Dψ(·, ·) ≥ 0, one has

Dψ(ai, x) − Dψ(ai, z) = Dψ(z, x) + (ψ′(z) − ψ′(x))(ai − z)

≥ (ψ′(z) − ψ′(x))(ai − z).

Thus, multiplying the above by wi and summing the resulting inequalities
it immediately follows that with z :=

∑m
i=1 wiai, the right-hand side of the

inequality is 0 and

m∑
i=1

wiDψ(ai, x) ≥
m∑

i=1

wiDψ

(
ai,

m∑
i=1

wiai

)
∀x ∈ int(dom ψ).

Hence z :=
∑m

i=1 wiai is the global minimizer, and for the Bregman distance
with the reversed order of variables we always obtain the standard weighted
arithmetic mean for the corresponding centroid. Further interesting results
when minimizing a Bregman distance with respect to the second argument
have been developed in [47]. For example, an explicit connection of Bregman
distances to the exponential family of statistical distributions has also been
shown there.

We next consider a special particular case of normalized KL distance.
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Example 10. Consider the KL distance (see Example 2) obtained from (13)
with ν = 0, µ = 1, i.e.,

Dψ(y, x) =
n∑

j=1

yj log
yj

xj
+

n∑
j=1

xj −
n∑

j=1

yj

(see (14)). When the vectors with non-negative coordinates x, y are L1 nor-
malized Dψ(y, x) reduces to

KL(y, x) =
n∑

j=1

yj log
yj

xj
.

Hence if ai are L1 norm vectors with non-negative coordinates,

1. M1 = min

{
m∑

i=1

wiDψ(ai, x) : 0 ≤ xj

}
and

2. M2 = min

⎧⎨
⎩

m∑
i=1

wiKL(ai, x) : 0 ≤ xj ,

n∑
j=1

xj = 1

⎫⎬
⎭

= min

⎧⎨
⎩

m∑
i=1

wiDψ(ai, x) : 0 ≤ xj ,

n∑
j=1

xj = 1

⎫⎬
⎭,

then one has M1 ≤ M2. Since as shown in Example 9

M1 =
m∑

i=1

wiDψ(ai, z) where z =
m∑

i=1

wia
i,

one has 0 ≤ zj ,
∑n

j=1 zj = 1. This shows that M1 = M2, and the centroid for
the case of the “simple” KL distance with L1 normalized data is given by the
arithmetic mean.

The above development justifies examining and analyzing the effect, ben-
efits and usefulness of using the resulting family of k-means type algorithms
equipped with entropy-like distances.

5 Batch and Incremental k-Means Algorithm

We now switch gears and state k-means clustering algorithms focusing on par-
titions, rather that on centroids. While the two approaches are equivalent (see
Sect. 2), the “partition” view of the algorithm makes and some drawbacks of
the batch k-means clustering algorithm apparent, and justifies introduction
of the incremental k-means clustering algorithm and the merger of the algo-
rithms (see Sect. 5.2).
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5.1 Batch Algorithm

The batch k-means algorithm is the two-step procedure oscillating between:

1. computation of centroids
{
x1, . . . , xk

}
for a given partition Π, and

2. computation of a partition Π = {π1, . . . , πk} for a given set of centroids{
x1, . . . , xk

}
as described in Sect. 2. An application of these two steps to a partition Π
generates partition nextBKM (Π) and Q (Π) ≥ Q (nextBKM (Π)) (see [166] for
the case of d(x, y) = ‖x − y‖2). While fast and easy to implement, the batch
k-means algorithm often gets trapped at a local minimum. In Example 11, we
consider a simple scalar dataset A and the batch k-means algorithm with the
squared Euclidean distance.

Example 11. Let A = {0, 2, 3}, and the initial partition Π(0) = {π(0)
1 , π

(0)
2 }

where π
(0)
1 = {0, 2}, and π

(0)
2 = {3}.

0. 5 0 0.5 1 1.5 2 2.5 3 3.5
1. 5

1

0. 5

0

0.5

1

1.5
INITIAL PARTITION

a
1

o
0

a
2

o
2

a
3

o
3

An iteration of the batch k-means algorithm applied to Π(0) does not change
the partition. On the other hand the partition Π(1) = {{0}, {2, 3}} is superior
to Π(0). The better partition Π(1) is undetected by the algorithm.

Next we continue to deal with d(x, y) = ‖x− y‖2 and describe a modification
of the batch k-means algorithm introduced independently by [219,277,458].

5.2 Incremental Algorithm

An alternative form of the batch k-means algorithm, the incremental algo-
rithm (see, e.g., [144]), is capable of “fixing” Example 11. For a given partition
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Π = {π1, . . . , πk} of the dataset A = {a1, . . . , am} the algorithm examines
partitions generated from Π by removing a single vector a from a cluster πi

and assigning this vector to a cluster πj . We shall denote the “new” clusters
by π−

i = πi − {a} and π+
j = πj ∪ {a}, and the obtained partition by Π ′. The

vector a and the “destination” cluster πj are associated with the change of
the objective function Q, i.e.,

q(a, j) = Q (Π) − Q (Π ′) =
[
Q (πi) − Q

(
π−

i

)]
+
[
Q (πj) − Q

(
π+

j

)]
. (26)

The partition Π ′ that maximizes (26) is called “first variation” of Π and
denoted by nextFV (Π). The main computational challenge associated with
(26) is evaluation of Q (π+) and Q (π−). A convenient expression for (26) is
given in [144]. Specifically,

Theorem 1. Let πi = π−
i ∪ {a} and π+

j = πj ∪ {a}. If |πi| = mi, |πj | = mj,
xi = x(πi), and xj = x(πj), then

[
Q (πi) − Q

(
π−

i

)]
+
[
Q (πj) − Q

(
π+

j

)]
=

mi

mi − 1

∣∣∣∣xi − a
∣∣∣∣2

− mj

mj + 1

∣∣∣∣xj − a
∣∣∣∣2 . (27)

Expression (27) shows that to compute the change of the objective function
due to an iteration of the incremental step one needs to know the cluster size
and the distances from each point of the dataset to all the centroids. These
distances are also computed at each iteration of the batch k-means algorithm.
This observation suggests applying a series of batch k-means iterations fol-
lowed by a single incremental iteration as follows:

Algorithm 2 (The k-means clustering algorithm)
For a user supplied non-negative tolerances tolB and tolI do the following:

1. Start with an arbitrary partitioning Π(0) =
{

π
(0)
1 , . . . , π

(0)
k

}
. Set the index

of iteration t = 0.
2. Generate the partition nextBKM

(
Π(t)

)
.

if
[
Q
(
Π(t)

)− Q
(
nextBKM

(
Π(t)

))
> tolB

]
set Π(t+1) = nextBKM

(
Π(t)

)
increment t by 1.
go to 2

3. Generate the partition nextFV
(
Π(t)

)
.

if
[
Q
(
Π(t)

)− Q
(
nextFV

(
Π(t)

))
> tolI

]
set Π(t+1) = nextFV

(
Π(t)

)
.

increment t by 1.
go to 2

4. Stop.
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As a rule an iteration of the batch algorithm changes cluster affiliation for a
large set of vectors, and an iteration of the incremental algorithm moves no
more than one vector. The above described “merger” of the batch and incre-
mental versions of the k-means algorithm enjoys speed of the batch version
and accuracy of the incremental version (unlike the incremental algorithm in-
troduced in [144], which looks for any vector whose reassignment leads to an
improvement of the objective function we employ – the “greedy” version that
looks for the maximal possible drop of the objective function). We next apply
Algorithm 2 to the initial partition provided in Example 11.

Example 12. A single iteration of the first variation applied to the initial parti-
tion Π(0) = {{0, 2} , {3}} generates the optimal partition Π(1) = {{0}, {2, 3}}.
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Note that all numerical computations associated with Step 3 of Algorithm 2
have been already performed at Step 2 (see (27)). The improvement over batch
k-means comes, therefore, at virtually no additional computational expense.

The decision whether a vector a ∈ πi should be moved from cluster πi

with mi vectors to cluster πj with mj vectors is made by the batch k-means
algorithm based on examination of the expression

∣∣∣∣a − xi
∣∣∣∣− ∣∣∣∣a − xj

∣∣∣∣. The
positive sign of

∆k =
∣∣∣∣a − xi

∣∣∣∣2 − ∣∣∣∣a − xj
∣∣∣∣2 ,

may trigger the move. As (27) shows, the change in the value of the objective
function caused by the move is

∆ =
mi

mi − 1

∣∣∣∣a − xi
∣∣∣∣2 − mj

mj + 1

∣∣∣∣a − xj
∣∣∣∣2 .

The difference between the expressions
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∆ − ∆k =
1

mi − 1

∣∣∣∣a − xi
∣∣∣∣2 +

1
mj + 1

∣∣∣∣a − xj
∣∣∣∣2 ≥ 0 (28)

is negligible when mi and mj are large numbers. However ∆−∆k may become
significant for small clusters. In particular, it is possible that ∆k is negative,
and the batch k-means iteration leaves a in cluster πi. At the same time the
value of ∆ is positive, and reassigning a to πj would decrease Q. Indeed, for
the dataset of Example 11 and a = 2 one has

∆k = ‖a2 − x1‖2 − ‖a2 − x2‖2 = 1 − 1 = 0,

and
∆ =

2
1
‖a2 − x1‖2 − 1

2
‖a2 − x2‖2 = 2 − 1

2
=

3
2
.

Note that the discussion following Example 12 holds true for a general distance-
like function d(x, y) (a detailed analysis of incremental k-means with KL di-
vergence is offered in [58]). Indeed, given a partition Π the decision whether
a vector a ∈ πi should be moved from cluster πi to cluster πj is made by the
batch k-means algorithm based on examination of the expression

∆k = d(xi, a) − d(xj , a). (29)

We denote centroids x(π−
i ) and x(π+

j ) by (xi)− and (xj)+, respectively. The
exact change in the value of the objective function caused by the move is

∆ =
[
Q (πi) − Q

(
π−

i

)]
+
[
Q (πj) − Q

(
π+

j

)]
=

⎡
⎣ ∑

a′∈π−
i

d(xi, a′) −
∑

a′∈π−
i

d((xi)−, a′)

⎤
⎦+ d(xi, a)

+

⎡
⎢⎣ ∑

a′∈π+
j

d(xj , a′) −
∑

a′∈π+
j

d((xj)+, a′)

⎤
⎥⎦− d(xj , a).

Hence ∆ − ∆k is given by∑
a′∈π−

i

d(xi, a) −
∑

a′∈π−
i

d((xi)−, a) +
∑

a′∈π+
j

d(xj , a) −
∑

a′∈π+
j

d((xj)+, a′). (30)

Due to definition of x(π) both differences in (30) are non-negative, hence

∆ − ∆k ≥ 0. (31)

If d(x, a) is strictly convex in x, then the inequality in (31) is strict provided
at least one new centroid is different from the corresponding old centroid.
This observation justifies application of an incremental iteration following a
series of batch iterations for general distance-like functions d(x, y) as suggested
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in Algorithm 2 for d(x, y) = ‖x − y‖2. Batch k-means with KL divergence
was already introduced in [137], its incremental counterpart appears in [58],
and the batch algorithm augmented by the incremental step was suggested
in [130,279].

Note that removal/assignment of a vector from/to a cluster changes clus-
ters’ centroids and all distances from the vectors in the two clusters involved
to the “new” centroids. Often the actual computations needed to evaluate the
change in the objective function use the distances between the “old” centroid
and the vector changing its cluster affiliation only.

Example 13. Incremental step with Bregman distance with reversed order of
arguments, i.e., d(x, y) = Dψ(y, x).
Let π be a set with p vectors, and a ∈ π. We denote the set π − {a} by π−,
and centroids of the sets π and π− (which are given by the arithmetic mean)
by x and x−, respectively. We first provide a formula for Q (π)−Q (π−). Note
that

Q (π) − Q
(
π−) =

∑
a′∈π−

d(x, a′) + d(x, a) −
∑

a′∈π−
d(x−, a′)

=
∑

a′∈π−
[ψ(a′) − ψ(x) − 〈a′ − x,∇ψ(x)〉]

−
∑

a′∈π−

[
ψ(a′) − ψ(x−) − 〈a′ − x−,∇ψ(x−)〉]+ d(x, a)

= (p − 1)
[
ψ(x−) − ψ(x)

]− 〈
∑

a′∈π−
a′ − (p − 1)x,∇ψ(x)〉

+d(x, a).

Keeping in mind that ∑
a′∈π−

a′ =
∑
a′∈π

a′ − a = px − a,

we get

Q (π) − Q
(
π−) = (p − 1)

[
ψ(x−) − ψ(x)

]− 〈x − a,∇ψ(x)〉 + d(x, a). (32)

Next we derive a convenient formula for Q (π)−Q (π+), where π is a set with
p vectors, a �∈ π, π+ = π ∪ {a}, x = x(π), and x+ = x(π+).

Q (π) − Q
(
π+
)

=
∑

a′∈π+

d(x, a′) − d(x, a) −
∑

a′∈π+

d(x+, a′)

=
∑

a′∈π+

[ψ(a′) − ψ(x) − 〈a′ − x,∇ψ(x)〉]

−
∑

a′∈π+

[
ψ(a′) − ψ(x+) − 〈a′ − x+,∇ψ(x+)〉]− d(x, a)
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= (p + 1)
[
ψ(x+) − ψ(x)

]− 〈
∑

a′∈π+

a′ − (p + 1)x,∇ψ(x)〉

−d(x, a).

Keeping in mind that ∑
a′∈π+

a′ =
∑
a′∈π

a′ + a = px + a,

we obtain

Q (π) − Q
(
π+
)

= (p + 1)
[
ψ(x+) − ψ(x)

]− 〈a − x,∇ψ(x)〉 − d(x, a). (33)

Finally we select two clusters πi, and πj from a partition Π and a ∈ πi. We
denote the number of vectors in each cluster by mi and mj , respectively. The
formula for [

Q(πi) − Q(π−
i )
]
+
[
Q(πj) − Q(π+

j )
]

follows from (32) and (33) and is given by[
Q(πi) − Q(π−

i )
]
+
[
Q(πj) − Q(π+

j )
]

= (mi − 1)
[
ψ((xi)−) − ψ(xi)

]
−〈xi − a,∇ψ(xi)〉
+(mj + 1)

[
ψ((xj)+) − ψ(xj)

]
+〈xj − a,∇ψ(xj)〉. (34)

In text mining applications, due to sparsity of the data vector a, most co-
ordinates of centroids (xi)− and xi coincide. Hence, when the function ψ
is separable, computations of ψ((xi)−) − ψ(xi) are relatively cheap. On the
other hand, the quantities 〈xi − a,∇ψ(xi)〉 have already been computed at
the batch step of the k-means algorithm and can be used by the incremental
step at no additional computational cost. (This remark holds true also for
centroids (xj)+ and xj).

While the computational cost of an incremental iteration following a batch
iteration remains negligible for distance-like functions generated by Bregman
distances with reversed order of variables, it may be as expensive as the cost of
a batch iteration for distance-like functions generated by Csiszar divergences
(see, e.g., [280]).

5.3 BIRCH-Like Extensions with Entropy-Like Distances

When the dataset A = {a1, . . . , am} is very large, one can consider the fol-
lowing clustering strategy:

1. Partition the dataset into a large number of small dense clusters,
2. Treat each small cluster as a single “cluster-point” and cluster the set of

“cluster-points,” and
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3. Recover the partition of the original datapoints from the generated clus-
ters of “cluster-points.”

The suggested strategy of sequential application of a number of clustering
algorithms was implemented in [276,278]. The first step of the described pro-
cedure can be implemented using, for example, the BIRCH strategy through
adaptive construction of a balanced cluster features tree in a preassigned
memory buffer (see [459]). In what follows we use PDDP [76] to simulate
data-squashing capability of BIRCH. If, for example, the average size of ob-
tained small clusters is 10, the size of the dataset is reduced by an order of
magnitude. The main technical questions one has to address are:

1. What information is needed for clustering “cluster-points,”
2. How much savings (in terms of speed and memory) can be achieved using

this approach.

The answers to these two questions for d(x, y) = ‖x−y‖2 are provided in [459]
and are summarized in the following result that follows from [144] (see also
Theorem 1).

Theorem 2. If A = π1 ∪π2 ∪ . . .∪πk with mi = |πi|, πi ∩πj = ∅ when i �= j,
and xi = x (πi), i = 1, . . . , k, then

x = x (A) =
m1

m
x1 + . . . +

mk

m
xk, where m = m1 + . . . + mk

and

Q (A) =
k∑

i=1

Q (πi) +
k∑

i=1

mi

∣∣∣∣x − xi
∣∣∣∣2 . (35)

If

X = {x1, . . . , x1︸ ︷︷ ︸
m1

, . . . , xk, . . . , xk︸ ︷︷ ︸
mk

}

is the set of centroids counted with appropriate weights, then (35) leads to
the following

Q (A) − Q (X ) =
k∑

i=1

Q (πi) .

The theorem shows that the quality of a partition comprising clusters π1, . . . , πk

is a function of:

1. Cluster centroids xi, i = 1, . . . , k;
2. Cluster sizes mi = |πi|, i = 1, . . . , k; and
3. Cluster qualities Q (πi), i = 1, . . . , k.

Hence the required overhead information per cluster is just two scalars |πi|
and Q (πi), and so mi, xi, and Q (πi) are sufficient statistics.
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Next we consider a couple of examples where the BIRCH construction can
be applied to distances other than ‖x−y‖2. First note that if π = {a1, . . . , ap},
x (π) is the centroid, and x is a vector, then

p∑
i=1

d(x, ai) =
p∑

i=1

d(x (π) , ai) +

[
p∑

i=1

d(x, ai) −
p∑

i=1

d(x (π) , ai)

]

= Q (π) +

[
p∑

i=1

d(x, ai) −
p∑

i=1

d(x (π) , ai)

]
. (36)

The first example handles Bregman distances with reversed order of variables.

Example 14. Consider the distance-like function d(x, a) = Dψ(a, x) = ψ(a) −
ψ(x) − 〈a − x,∇ψ(x)〉 (see Example 9). Due to (36), one has

p∑
i=1

d(x, ai) = Q (π) + p [ψ(x (π)) − ψ(x) − 〈x (π) − x,∇ψ(x)〉]

= Q (π) + pDψ (x (π) , x) .

This straightforward computation immediately leads to the following gener-
alization of Theorem 2.

Theorem 3. If A = π1∪π2∪· · ·∪πk with mi = |πi|, xi = x (πi), i = 1, . . . , k;
and

x = x (A) =
m1

m
x1 + · · · + mk

m
xk, where m = m1 + · · · + mk,

then

Q (A) =
k∑

i=1

Q (πi) +
k∑

i=1

mi

[
ψ(xi) − ψ (x)

]

=
k∑

i=1

Q (πi) +
k∑

i=1

miDψ

(
x (πi) , xi

)
.

The required overhead information per cluster are two scalars |πi| and Q (πi).
We now turn to a distance-like function generated by Csiszar divergence.

Example 15. Let ϕ1(t) = t log t− t + 1. The corresponding distance-like func-
tion is (see (4))

d(x, a) =
n∑

j=1

[
xj log

xj

aj
− xj + aj

]
.

The centroid x = x (π) of a p element set π is given by the geometric mean,
i.e.,
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xj =

⎧⎪⎪⎨
⎪⎪⎩
∏
a∈π

(aj)
1
p if aj > 0 ∀ a ∈ π,

0 otherwise

(for details and clustering with geometric means see [280]).
Given a set of p vectors A = {a1, . . . , ap} and a set of q vectors B =

{b1, . . . , bq}, denote x (A) by x1, x (B) by x2, and x (A ∪ B) by x. Note
that

xj =

⎧⎪⎨
⎪⎩

0 if x1
jx

2
j = 0,[(

x1
j

)p (
x2

j

)q
] 1

p+q

otherwise.

A straightforward computation shows that the quality of the cluster A∪B is

Q (A ∪ B) =
p∑

i=1

eT ai +
q∑

i=1

eT bi − (p + q)eT x,

where e is the vector of ones. The formula shows that in order to employ the
BIRCH type clustering procedure one needs to have the following information
concerning each cluster π:

1. Centroid x (π),
2. Cluster size |π|, and
3. eT

(∑
a∈π a

)
.

Note that the required overhead information per cluster is two scalars, exactly
the same as in the quadratic case.

6 Experimental Results

In this section we present numerical experiments to show the effectiveness of
the merger of batch and incremental k-means algorithms on gene microarray
data and the efficiency of our BIRCH-like approach on text data. All the
experiments are performed on a Linux machine with 2.4 GHz Pentium IV
processor and 1 GB main memory.

Recent microarray technology has made it possible to monitor the expres-
sion levels of tens of thousands of genes in parallel. The outcome of a microar-
ray experiment is often represented as a matrix called gene-expression matrix.
Within a gene-expression matrix, rows correspond to genes and columns often
represent samples related to some diseases such as cancers. Each entry gives
the expression level of a gene in a sample. Clustering of cancer-related sam-
ples according to their expression across all or selected genes can characterize
expression patterns in normal or diseased cells and thus help improve cancer
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treatment [199]. In our experiments, we use two human cancer microarray
data sets: lung cancer data2 and leukemia data3. The lung cancer data consist
of 31 malignant pleural mesothelioma (MPM) samples and 150 adenocar-
cinoma (ADCA) samples [201]. Each sample is described by 12, 533 genes.
The leukemia data consists of 72 samples, including 47 acute lymphoblastic
leukemia (ALL) samples and 25 acute myeloid leukemia (AML) samples [199].
Each sample is described by 6, 817 genes. For both data sets, we perform
a preprocessing to remove the genes that exhibit near-constant expression
levels across all the samples, based on the ratio and the difference of each
gene’s maximum and minimum expression values, denoted as max/min and
max−min. For lung cancer, after filtering out genes with max/min < 5 and
max−min < 500, we are left with a 2, 401× 181 gene-expression matrix. For
the leukemia data, we remove genes with max/min < 5 and max−min < 600
and are left with a 3, 571×72 gene-expression matrix. Then we normalize each
gene (row) vector in both matrices such that each row has mean 0 and stan-
dard derivation 1, i.e., if gi is the original gene vector, then the normalized
gene vector ĝi is given by

ĝi
j =

gi
j − ḡi

σi
,

where ḡi =
∑s

j=1 gi
j/s, σi =

√∑s
j=1(g

i
j − ḡi)2/s, and s is the number of

samples.
To evaluate the clustering of samples, we compare it with the sample class

labels that we already know and form a confusion matrix, in which entry (i, j),
n

(j)
i , gives the number of samples in cluster i that belong to class j. A diagonal

confusion matrix is desirable since it represents a perfect clustering.
We apply the batch Euclidean k-means, i.e., k-means with squared Euclid-

ean distances (C 2), on the lung cancer data, with random initialization, 100
times. On average, 45 samples are misclassified according to the class labels.
However, if we apply the merger of the batch and the incremental Euclid-
ean k-means algorithm described in Algorithm 1 on lung cancer data, we
get perfect clustering for all 100 random runs. Figure 1 shows the objective
function values with the progress of batch and incremental iterations on a
particular run of Algorithm 1. A circle indicates a batch iteration and a star
indicates an incremental iteration. The objective function value decreases in
a monotone manner all the way but there are phase changes from batch to
incremental and vice versa. Observe that the batch k-means algorithm con-
verges to a local optimum after 8 iterations, generating the clustering with an
objective function value 408, 447 and the confusion matrix in the left panel of
Table 1. Following the batch iterations are 20 incremental iterations, each of
which moves a sample between clusters and decreases the objective function
value a little bit. The 20 moves help the batch algorithm get out of the local

2Downloaded from http://www.chestsurg.org/microarray.htm
3Downloaded from http://wwwgenome.wi.mit.edu/mpr/data set ALL AML.html
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Fig. 1. Lung cancer data: Objective function value vs. iteration count

Table 1. Lung cancer: confusion matrix by batch k-means (left) and by Algorithm1
(right)

Cluster # ADCA MPM

1 100 0

2 50 31

Cluster # ADCA MPM

1 150 0

2 0 31

optimum. So after the 20 incremental iterations, there are 5 more batch iter-
ations, which substantially decrease the objective function value. Eventually
we get the diagonal confusion matrix as in the right panel of Table 1 and the
final objective function value is 399, 821.

In over 100 random runs on the leukemia data, on average, 25 samples
are misclassified by the batch k-means but only 2 by Algorithm 1. Figure 2
shows a particular run of Algorithm 1 on leukemia data. As in the previous
example, incremental iterations lead the batch k-means out of local minima
and trigger more sample moves between clusters. Table 2 contains the con-
fusion matrix when the batch k-means converges at the fifth iteration from
the start and the confusion matrix when Algorithm 1 stops. The objective
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Fig. 2. Leukemia data: Objective function value vs. iteration count

Table 2. Leukemia: confusion matrix by batch k-means (left) and by Algorithm1
(right)

Cluster # ALL AML

1 28 16

2 19 9

Cluster # ALL AML

1 47 2

2 0 23

function values at the fifth iteration is 1.94 × 1011 and the final objective
function value is 1.86 × 1011.

To exhibit the efficiency of our BIRCH-like approach, we compare it
with the k-means algorithm using KL divergence, also known as the divisive
information-theoretic clustering (DITC) algorithm [137], and its enhanced
variants [130], on the CMU newsgroup text data. This data set consists of
approximately 20000 newsgroup postings collected from 20 different usenet
newsgroups (see Table 3). One thousand messages are in each of the 20
newsgroups. Some of the newsgroups have similar topics (e.g., comp.graphics,
comp.os.ms-windows.misc, and comp.windows.x), while others are unrelated
(e.g., alt.atheism, rec.sport.baseball, and sci.space). To preprocess the
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Table 3. CMU newsgroup20: group names

Group # Group name

1 alt.atheism

2 comp.graphics

3 comp.os.ms-windows.misc

4 comp.sys.ibm.pc.hardware

5 comp.sys.mac.hardware

6 comp.windows.x

7 misc.forsale

8 rec.autos

9 rec.motorcycles

10 rec.sport.baseball

11 rec.sport.hockey

12 sci.crypt

13 sci.med

14 sci.electronics

15 sci.space

16 soc.religion.christian

17 talk.politics.guns

18 talk.politics.mideast

19 talk.politics.misc

20 talk.religion.misc

documents and build the vector-space model [381], we first remove the header
of each document, except for the subject line, then we use the Bow soft-
ware [330] to filter out stopwords and select the 2,000 words with the highest
contribution to the mutual information as features to represent documents.
Documents with less than 10 word occurrences are discarded. After the pre-
processing, we are left with a 2,000× 17,508 word-document matrix. Then we
apply the popular (term frequency inverse document frequency tfidf) scaling
[380] on this matrix and normalize each document vector to have L1 norm 1.

In DITC, each document is treated as a probability distribution over words
and the objective function to minimize is

k∑
l=1

∑
a∈πl

p(a)KL(a, xl),

where a = (a1, ..., an),
∑n

j=1 aj = 1, p(a) is the prior for a and
∑

a∈A p(a) = 1,
KL(a, xl) is the KL divergence between a and its cluster centroid xl =∑

a∈πl
p(a)a/

∑
a∈πl

p(a). Generally, a word-document matrix is very sparse;
in our case, more than 98% of the entries are zeros. Dhillon and Guan [130] find
that DITC can falter in the presence of sparsity and propose the DITC prior
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algorithm using an annealing factor to perturb the centroids to avoid infi-
nite KL divergences and to improve the clustering results. At the beginning
of DITC prior the annealing factor is set to a large value, then it subse-
quently decreases every iteration and eventually becomes zero. Dhillon and
Guan also study the performance of the merger of DITC and DICT prior
with their incremental version, which are referred to as DITC merger and
DITC prior merger in this section. DITC prior is used in our BIRCH-like ap-
proach because it gives almost as good results as DITC prior merger but it is
much faster than the latter [130].

We first apply PDDP on the word-document matrix and generate 100, 200,
500, and 1000 document clusters. Then for each case, we compute the cluster
centers and then cluster the centers into 20 clusters using DITC prior. After
we get the clustering of the cluster centers, we project it to the clustering of the
original documents, i.e., documents that are clustered into the same cluster
by PDDP will have the same projected cluster membership. For comparison
in clustering quality, we also use the projected clustering as initialization and
run DITC and DITC prior on the entire set of documents. We call this last
strategy BIRCH-like+DITC and BIRCH-like+DITC prior approaches.

Since we know the class label for each document, we could form the con-
fusion matrix; however, instead of showing a 20 × 20 matrix, we introduce
a scalar for cluster validity, normalized mutual information (NMI), which is
computed based on the confusion matrix, as

2
∑k

l=1

∑c
h=1

n
(h)
l

n log
(

n
(h)
l

n∑k

i=1
n

(h)
i

∑c

i=1
n

(i)
l

)
H(π) + H(ζ)

,

where c is the number of classes, ni is the number of documents in cluster i,
and n(j) is the number of documents in class j, H(π) = −∑k

i=1
ni

n log
(

ni

n

)
,

and H(ζ) = −∑c
j=1

n(j)

n log
(

n(j)

n

)
. An NMI value is between 0 and 1, and a

high NMI value indicates that the clustering and the true class label match
well.

Tables 4–6 compare the NMI values, objective function values, and com-
putation time by DITC (averaged over 10 random runs), DITC merger
(averaged over 10 random runs), DITC prior, DITC prior merger, BIRCH-
like, BIRCH-like+DITC, and BIRCH-like+DITC prior approaches. Among
all the algorithms, mergers are most computationally expensive. Between the
BIRCH-like approaches and DITC with random initialization, the BIRCH-
like approach takes almost the same time but gives better NMI values. As we
increase the number of clusters generated by PDDP, the computation time
increases because more centers need to be clustered; however, the highest
NMI value is achieved for 1,000 clusters. The BIRCH-like+DITC prior gives
as good as or better clustering results, compared to DITC prior and takes
much less time. The performance of BIRCH-like+DITC is slightly worse than
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Table 4. CMU newsgroup20: NMI values by DITC, DITC merger, DITC prior,
and DITC prior merger applied to the entire newsgroups (top) and by BIRCH-like,
BIRCH-like+DITC, and BIRCH-like +DITC prior (bottom)

DITC DITC merger DITC prior DITC prior merger

0.42 0.55 0.62 0.63

#clusters by PDDP BIRCH-like BIRCH-like+DITC BIRCH-like+DITC prior

100 0.45 0.57 0.63

200 0.46 0.58 0.62

500 0.47 0.59 0.62

1,000 0.5 0.6 0.64

Table 5. CMU newsgroup20: Objective function values by DITC, DITC merger,
DITC prior, and DITC prior merger applied to the entire newsgroups (top) and by
BIRCH-like, BIRCH-like+DITC, and BIRCH-like +DITC prior (bottom)

DITC DITC merger DITC prior DITC prior merger

4.82 4.73 4.56 4.55

#clusters by PDDP BIRCH-like BIRCH-like+DITC BIRCH-like+DITC prior

100 4.84 4.66 4.56

200 4.81 4.63 4.57

500 4.78 4.6 4.56

1,000 4.78 4.61 4.56

Table 6. CMU newsgroup20: computation time (in seconds) by DITC,
DITC merger, DITC prior, and DITC prior merger applied to the entire news-
groups (top) and by BIRCH-like, BIRCH-like+DITC, and BIRCH-like +DITC prior
(bottom)

DITC DITC merger DITC prior DITC prior merger

10 859 53 831

#clusters by PDDP BIRCH-like BIRCH-like+DITC BIRCH-like+DITC prior

100 9 15 31

200 10 16 31

500 12 18 33

1,000 14 20 37

DITC prior but BIRCH-like+DITC runs much faster than DITC prior. This
is because the BIRCH-like approach is a good initialization, so the DITC prior
algorithm can use smaller starting annealing factor and thus converges in fewer
iterations as shown in Table 7.
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Table 7. CMU newsgroup20: iteration count of DITC, DITC merger,
DITC prior, and DITC prior merger (top) and of BIRCH-like+DITC, and BIRCH-
like+DITC prior (bottom) applied to the entire newsgroups

DITC DITC merger DITC prior DITC prior merger

9 29 25 45

#clusters by PDDP BIRCH-like+DITC BIRCH-like+DITC prior

100 3 15

200 3 11

500 3 15

1,000 3 16
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Sampling Methods for Building Initial
Partitions

Z. Volkovich, J. Kogan, and C. Nicholas

Summary. The initialization of iterative clustering algorithms is a difficult yet
important problem in the practice of data mining. In this chapter, we discuss two new
approaches for building such initial partitions. The first approach applies a procedure
for selecting appropriate samples in the spirit of the Cross-Entropy (CE) method,
and the second is based on a sequential summarizing schema. In the first approach,
we use a sequential sample clustering procedure instead of the simulation step of
the CE method. In this context, we state several facts related to the Projection
Pursuit methodology for exploring the structure of a high-dimensional data set.
In addition we review several external and internal approaches for cluster validity
testing. Experimental results for cluster initializations obtained via the CE method
and the first of the presented methods are reported for a real data set.

1 Introduction

The purpose of unsupervised classification, or cluster analysis, is to partition
data (objects, instances) into similar groups so that objects in the same group
are more similar than those from different groups. The similarity between
the dataset elements is frequently described by means of a distance function.
Computer-supported analysis based on this similarity function is intended to
separate items into homogeneous sets, to provide an interpretation of the inner
configuration of the observations, and to identify any “natural” group. Gener-
ally speaking, most existing clustering methods can be categorized into three
groups: partitioning, hierarchical, and density-based approaches. The hierar-
chical procedures yield a nested sequence of partitions and, as a rule, avoid
specifying how many clusters are appropriate. This sequence of partitions is
often presented in the form of dendrograms, or tree diagram, and the desired
number of clusters can be found by cutting the dendrogram at some level.
One of the principal disadvantages of hierarchical algorithms is the high com-
putational cost, making most of them unviable for clustering large datasets.
Partitioning methods have the benefit of being able to incorporate knowledge
about the size of the clusters by using certain templates and the elements’



162 Z. Volkovich et al.

dissimilarity in the objective function. Such a procedure is guaranteed to pro-
duce clustering for any data; however, it is very hard to achieve the global
optimal partition.

In general, clustering algorithms make different assumptions about the
dataset structure. Well-known iterative procedures, like k-means clustering
or k-median clustering, assume that the analyzed set consists of a number of
separated subsets of data points such that each one is suitably (spherically
in the case of k-means) distributed around its center. Since for the cases of
interest one does not know whether these assumptions are satisfied by the
data, a final partition of the k-means iteration process essentially depends
on an initial partition of a dataset. How “good” initial partitions can be
constructed remains an open question. Employing sampling procedures for
statistical estimation of initial centroids can be considered as a special case of
the sampling-base meta-algorithms suggested in [92] and [392]:

1. Draw a random sample from the underlying dataset,
2. Find a good clustering of the sample,
3. Extend the clustering of the sample to a clustering of the full dataset.

The significant point in converting these models into a specific algorithm
is the realization of the (third) extension step. There are at least two options
in the case of the k-means like clustering algorithms. The first approach is to
use collected sample centroids as initial centroids for entire dataset clustering.
The second (näıve) approach defines the final partition by assigning each point
to the nearest sample centroid.

We note that different sampling techniques have been proposed in the
past, for example, speeding up performance of the classical k-means [122], or
finding the “true” number of clusters [148].

In this chapter, in Sects. 5 and 6 we discuss two new approaches for building
an initial cluster partition based on a bootstrapping technique in conjunction
with the Gaussian Mixture Model of data, comparing it to the well-known
Cross-Entropy (CE) method [376]. One of the approaches applies a procedure
for selecting appropriate samples in the spirit of the CE method and the other
is based on a sequential summarizing schema. In the first approach we use a
sequential sample clustering procedure instead of the simulation step of the
CE method.

First, we state in Sect. 2 the well-known clustering Expectation-
Maximization (EM) and k-means models, and related statistical facts. A
difficulty in applying sample procedures for multivariate data is the problem of
“the curse of dimensionality” (a term coined by Bellman [54]). The curse of di-
mensionality means that most high-dimensional projections are empty unless
the sample is quite large. This is often the case with the sparse data that
are typical in text mining applications (see, for example, [60]). In Sect. 3, we
review several statistical techniques for projection index pursuit that make
it possible to overcome this problem by initializing clusters in appropriate
“interesting” low-dimensional subspaces.
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Section 4 is devoted to several internal and external approaches for cluster
validation testing. Experimental results comparing cluster initializations ob-
tained via the CE method and the first of the presented methods are reported
for real data in Sect. 7.

2 Clustering Model

Let {x1, ..., xm} be a set of vectors in a subset X of the n-dimensional Euclid-
ean space Rn. Consider a partition Π = {π1, . . . , πk} of the set, i.e.,

π1 ∪ · · · ∪ πk = {x1, . . . , xm} and πi ∩ πj = ∅ if i �= j.

Given a real valued function q whose domain is the set of subsets of
{x1, . . . , xm} the quality of the partition is given by Q(Π) = q(π1)+· · ·+q(πk).
The problem is to identify an optimal partition {πo

1, . . . , π
o
k}, i.e., a partition

that optimizes Q(Π). Often the function q is associated with a “dissimilar-
ity measure,” or a “distance-like” function d(x, y). We refer to d(·, ·) as a
“distance-like” function, since d is not required to be symmetric or satisfy the
triangle inequality. Use of such a function commonly provides better grouping
in comparison with classical dissimilarity measures like the squared standard
Euclidean distance [278,279,432]. However, we restrict ourselves to consider-
ing only the squared standard Euclidean distance function, since the choice
of distance function does not make much difference in the case of relatively
small samples. The above-mentioned optimization problem is represented in
this case as:

min
cj

R(c1, ..., ck) =
k∑

j=1

∑
z∈X

min
cj

‖z − cj‖2
. (1)

The k-means method produces an approximate solution to this optimiza-
tion problem in an iterative way:

1. Construct an initial partition.
2. Minimization: calculate the mean (centroid) of each cluster’s points.
3. Classification: assign each element to the nearest current centroid.
4. Repeat Steps 2 and 3 until the partition is stable, that is, until the cen-

troids no longer change.

The convergence proof of the k-means clustering algorithms requires show-
ing two easy facts:

• Reassigning a point to a different group does not increase the error func-
tion;

• Updating the mean of a group does not increase the error function.

However, k-means often leads to a partition consisting of the so-called “non-
optimal stable clusters.” One way to overcome this problem is to use
the incremental k-means algorithm (see, e.g., [132, 133, 144, 280]). Note that
this incremental k-means algorithm gives more accurate results in the case of
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relatively small clusters and is frequently able to escape local minima. The
k-means approach can be considered as a simplification of the well-known EM
algorithm.

The EM algorithm [100, 173, 464] is an iterative procedure for finding the
maximum-likelihood estimate of the parameters for the mean and variance–
covariance of each group, and the mixing proportion in situations when the
number of components k is known. Recall that this algorithm fits the Gaussian
Mixture Model (GMM) of data, that is, the underlying probability density of
X is represented by

f(x) =
k∑

i=1

piG(x|µi,
∑

i),

where G(x|µ,
∑

) is the Gaussian density with mean µ and covariance matrix∑
. In the special spherical case∑

i = σ2I, i = 1, . . . , k,

where I is the n×n identity matrix and σ2 is the unknown dispersion of each
cluster, the standard k-means algorithm can be shown to be a version of the
EM algorithm and each component Π = {π1, . . . , πk} is parametrized by its
average µi, i = 1, . . . , k associated with the cluster centroid cj , j = 1, . . . , k.
That is, the clusters are spherical, centered at the means µi, i = 1, . . . , k.

Given a partition Π = {π1, . . . , πk}, 2 ≤ k, the optimization criterion
presented in (1) is based on the total dispersion matrix or total scatter matrix:

Tk =
k∑

j=1

∑
z∈πj

(z − µ)(z − µ)t, (2)

where µ is the arithmetic mean of the set X. Matrices Bk and Wk of between
and within k-clusters sums of squares are defined as

Bk =
k∑

j=1

|πj | (µj − µ)(µj − µ)t, Wk =
k∑

j=1

∑
z∈πj

(z − µj)(z − µj)
t, (3)

where µj is the arithmetic mean of πj , j = 1, ..., k , and Tk = Wk + Bk (see,
for example, [326]).

Actually, the optimization problem corresponds to minimizing the trace
of Wk. Note that in the framework of GMM, the distributions of Tk, Wk, and
Bk can be calculated analytically under the null hypothesis that there are “no
clusters” in the data, i.e., the data are one big cluster. Estimates of cluster
validity based on these statistics have been developed [96,222,296].

3 Projection Pursuit

Projection pursuit is a statistical methodology for exploring the structure in
high-dimensional datasets by means of low-dimension projectors. Projection
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pursuit works by optimizing a predetermined criterion function, called a pro-
jection pursuit index. Principal component analysis (PCA) is one of the more
traditional tools used to create an informative low-dimensional data represen-
tation. However, PCA does not necessarily provide the “best” representation
of the data and may miss “interesting” details of the data structure. Hence,
much research has been done on methods that identify projections having the
ability to display most “interesting” features of the data.

It appears that the idea of a projection pursuit index first appeared in the
papers of Kruskal [295] and Friedman and Tukey [178]. The projection onto
an appropriate “interesting” low-dimensional subspace often makes it possi-
ble to overcome the aforementioned “curse of dimensionality.” An interesting
low-dimensional subspace is chosen according to a projection pursuit index
optimization. From this point of view, PCA can be considered a special case
of the projection pursuit procedure for which the index is the variance of data
maximized over all unit projections.

Many indices have been developed from different standpoints. Super-
vised classification applications (see, for example, [80, 306]) commonly em-
ploy indices based on maximization of the relationship between-group sums
of squares and within-group sums of squares (see the definition in Sect. 2).
Unsupervised classifications take advantage of indices based on a so-called
“departure from normality.” As shown by Diaconis and Freedman [138], under
some weak assumptions, distributions of linear projections can be considered
as approximately normal in the high-dimension case, i.e., practically speaking,
most projections are approximately Gaussian distributed. By the well-known
Cramer–Wold principle, if all one-dimensional projections are normal then the
underlying distribution is normal too. However, a particular linear projection
may not let us see the clustering structure in a high-dimension dataset, even
if some other projection would show us the peaks in projection density that
correspond to the clusters in the dataset.

Another simple interesting interpretation of this concept has been dis-
cussed in [79]. For a given dataset the index corresponding to PCA is

V = max
a

〈a, Sa〉, (4)

where a ∈ Rn is a direction, S is the sample covariance matrix, and 〈a, b〉 is
the scalar product of a, b ∈ Rn. It is well known that a vector a maximizing
〈a, Sa〉 is the eigenvector corresponding to the largest eigenvalue of S, i.e.,
a is the direction of maximum variance in the data. We suppose that the
underlying distribution is normal with the parameters µ and

∑
. The log-

maximum likelihood function of the direction a is

l(a) = −mn

2

(
1 + log

(
2πm

m − 1

))
− m

2
log(V ), (5)

where m is the dataset size and n is the data dimension. For all a this func-
tion is maximized with the same estimators of the parameters, hence this
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function can be viewed as a pursuit index. Moreover, this function decreases
monotonically as a function of V . Then, if normality is assumed, the most
interesting projections correspond to the smallest values of l(a), i.e., the most
interesting projection possesses the smallest likelihood values.

Now we describe several widespread indexes. A review of dimension reduc-
tion techniques including such indexes can be found in [98].

3.1 Friedman’s Pursuit Index

Friedman’s Pursuit Index [175] is intended to search for those directions a in
which the marginal distribution based on the projection has the maximum
departure from the univariate Gaussian law. For a given a, the projection
Y = 〈a,X〉 is mapped into [−1, 1] by the formula

pr(x) =
1
2pY (Φ−1(x+1

2 ))
ϕ(Φ−1(x+1

2 ))
, (6)

where pY is the density of Y , ϕ is the standard normal density, and Φ is
the cumulative normal standard distribution. Hence, the purpose is to find a
direction such that the density pr(x) is most different from 1

2 in the L2 norm,
i.e., to maximize the functional

l(a) =

1∫
−1

(
pr(x) − 1

2

)2

dx =

1∫
−1

p2
r(x) dx − 1

2
. (7)

For the calculation of this index we approximate the function pr(x) by a series
of the Legendre polynomial:

pr(x) =
∞∑

k=0

ckLk(x), (8)

where

ck =
2k + 1

2

1∫
−1

Lk(x)pr(x) dx. (9)

Substituting this into the index expression above, we have

l(a) =
∞∑

k=0

2k + 1
2

E(Lk(x))2 − 1
2
,

where the expectation E is with respect to the random variable x. This value
can be estimated using empirical expectation as:

Ê(Lk(x)) =
1
m

m∑
i=0

Lk(2Φ(〈a,Xi〉) − 1). (10)
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Recall that m is the size of the dataset being considered. The required calcu-
lation can be performed very quickly using the recurrence relationship:

L0(x) = 1, L1(x) = x,

Lk(x) =
2k − 1

k
xLk−1(x) − k − 1

k
Lk−2(x).

The series expansion in the expression for l(a) has to be truncated to
avoid overfilling, since the high-order estimated coefficients are unstable even
for large samples. Typically, no more than eight terms in the expansion are
considered. On the other hand, if the sample size is large enough, then we
can start from small values of the terms and later improve local maxima by
increasing the number of terms.

As shown in [112] the Friedman index can be rewritten as

l(a) =

∞∫
−∞

(f(x) − ϕ(x))2

2φ(x)
dx, (11)

where f(x) is the normalized projection density. Hence, this index is a special
case of a general set of indexes based on the orthogonal polynomial considered
in [112]. For instance, the Hall index [214] is

lH(a) =

∞∫
−∞

(f(x) − ϕ(x))2 dx, (12)

and the natural Hermit index is

lC(a) =

∞∫
−∞

(f(x) − ϕ(x))2 φ(x) dx. (13)

All these can be computed via an orthogonal expansion of f(x) using Hermite
polynomials, where φ(x) is (as usual) the density of the standard normal
distribution.

3.2 Entropy-Based Indexes

Another way to measure departure from normality is by using entropy (some-
times also called differential entropy) [235, 252]. It is well known that the
entropy H of a random vector having density f is:

H = −
∫

f(x) log(f(x)) dx. (14)
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The natural information-theoretic one-unit contrast function is negen-
tropy, defined as

J(f) = H(pg) − H(f), (15)

where pg is a Gaussian density with mean and covariance equal to those of f .
Several properties of entropy related to the pursuit index concept have been
discussed in [252]. In particular, Gibb’s second theorem states that a mul-
tivariate Gaussian density maximizes the entropy with respect to f over all
distributions with the same mean and covariance. For any other non-normal
distribution, the corresponding entropy is strictly smaller. Therefore, negen-
tropy will always be positive for non-normal distributions and will be “0” if
the distribution f is Gaussian. The estimation of entropy is rather problematic
in practice. Two ways to evaluate the entropy may be suggested:

• Replace the integral with its sample value by numerical integration;
• Approximate by means sample statistics and univariate nonparametric

density estimations.

However, these approaches are recognized as computationally ineffective and
theoretically difficult. Simpler estimates of entropy are frequently based on
the polynomial expansions of the projection density or on the Gram–Charlier–
Edgworth approximations. For example, negentropy can be approximated for
standardized random values by higher-order cumulants as follows:

J � − 1
12

(
k2
3 +

1
4
k2
4

)
(16)

where ki, i = 3, 4, are the ith order cumulants. As argued in [237], cumulant-
based approximations appear to be inaccurate and too sensitive to outliers.
Approximations of negentropy suggested in [237] can be represented in the
simplest case as:

J � c (E(V (x)) − E(V (g))), (17)

where V is any nonquadratic function, c is an arbitrary constant, and g is
a standardized Gaussian variable. Recall that x is assumed to be standard-
ized as well. For V (x) = x4, we get the modulus of kurtosis. The statistical
characteristics of these estimators were analyzed as well. It was shown that
for an appropriate selection of V the asymptotic variance and robustness are
significantly better than analogous cumulant-based estimators. The following
options for V were considered:

V1 = log(cosh(a1x)), V2 = exp
(
−a2x

2

2

)
. (18)

Experimentally, it was found that especially the values 1 ≤ a1 ≤ 2 and a2 = 1
provide good approximations.
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3.3 BCM Functions

As mentioned in Sect. 3.2, computationally attractive projection indices based
on polynomial moments are not directly applicable, as they heavily emphasize
departure from normality in the tails of the distribution. Friedman tried to
overcome this problem by using a nonlinear projection on the data on [−1, 1]
(as described earlier). On the other hand, the Friedman index is insensitive to
multimodality in the projected distribution in the case of significant difference
distinction between the picks’ sizes. The insensitivity is caused by the L2 norm
approximation.

An approach for exploring the projection multimodality has been consid-
ered in the framework of the synaptic modification theory of Bienenstock,
Cooper, and Munro neurons (BCM). BCM yields synaptic modification equa-
tions that maximize a projection index l(a) as the function of a direction a. In
this context, l(a) is called a cost function and it measures the deviation from
a Gaussian distribution. Synaptic modification equations are achieved using
gradient ascent with respect to the weights (see, for example, [71]).

Intrator and Cooper [239] introduced a cost function to assess the deviation
from a Gaussian distribution in the form of multimodality:

l(a) =
1
3
E(〈a,X〉3) − 1

4
E2(〈a,X〉2)

As was noted in [71], the cost function

l(a) = E

[
〈a,X〉2

(
1 − 1

2
〈a,X〉2

)]
,

can be regarded as a cost function for PCA. Other cost functions based on
skewness and kurtosis of a projection were also discussed.

4 Cluster Validation

In general, validating clustering solutions means evaluating results of cluster
analysis in a quantitative and objective manner. Such an evaluation can be
built on two kinds of criteria:

• Internal criteria: the quality measure is fully based on the data themselves,
• External criteria: a clustering solution is based on a prior information, i.e.,

external information that is not contained in the dataset. For instance,
it can be a classification obtained by another approach or preprocessed
information about data structure.

In this section we recall several facts regarding the internal and external cri-
teria. In this presentation we partly follow [145].
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4.1 Internal Criteria

Several methods have been proposed for inner testing of cluster validation.
Jain and Dubes [242] provided an overview of statistical validation approaches
based on testing the null hypothesis in the absence of clustering together with
estimating the number of cluster component in a set. As usual, these proce-
dures are based on the within-clusters, and possibly between-clusters, sums
of squares described in Sect. 2. Such methods employ the same observations
that are used to create the clustering. Consequently, the distribution of suit-
able statistics is intractable. In particular, as clustering routines attempt to
maximize the separation between clusters, ordinary significance tests such as
analysis of variance F -tests are not valid for testing differences between the
clusters. A Monte Carlo evaluation of 30 internal indices was provided in [457].

We state here several inner procedures. Recall that for a dataset parti-
tioned into k clusters, define Bk and Wk to be the matrices of between and
within clusters sums of squares (see Sect. 2). The following indices are fre-
quently used to estimate the number of clusters in a dataset.

1. The Calinski and Harabasz index [96] defined as

CHk =
tr(Bk)/(k − 1)

tr (Wk) /(m − k)
.

The estimated number of clusters is given by k providing the maximum
of CHk, where m is the size of the considered dataset.

2. The Krzanowski and Lai index [296] defined by the following relationships

dif fk = (k − 1)2/n tr(Wk−1) − k2/n tr(Wk)

KLk = |dif fk|/|dif fk+1|.
The estimated number of clusters matches the maximal value of the index
KLk, where n is the dimension of the dataset being considered.

3. The Hartigan index [462] defined as

hk =
(

tr(Wk)
tr(Wk+1)

− 1
)

(m − k − 1)

The estimated number of clusters is the smallest k ≥ 1 such that hk ≤ 10,
where again m is the size of the dataset being considered.

4. Sugar and James [414] proposed an information-theoretic approach for
finding the number of clusters in a dataset that can be considered an
index in the following way. We select a transformation power t. A typical
value is t = n/2, where n is the dimension of the considered dataset. Then
calculate the “jumps” in transformed distortion,

Jk =
(
tr(Wk)−t − tr(Wk−1)−t

)
.

The estimated number of clusters matches the maximal value of the index
Jk.
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5. In the Gap index [420], for each k ≥ 1, compute the values tr (Wk). B
(B = 10 in the paper) reference datasets are generated under the null
distribution assumption. Each of the datasets is presented to a clustering
procedure, and the values tr

(
W 1

k

)
, ..., tr

(
WB

k

)
are evaluated. The esti-

mated gap statistics are calculated as

gapk =
1
B

∑
b

log
(
tr
(
W b

k

))− log (tr (Wk)).

Let sdk be the standard deviation of log
(
tr
(
W b

k

))
, 1 ≤ b ≤ B, and

ŝdk = sdk

√
1 +

1
B

.

The estimated number of clusters is the smallest k ≥ 1 such that

gapk ≥ gapk∗ − ŝdk∗ ,

where k∗ = argmaxk≥1(gapk). The uniform distribution is chosen as a
reference null distribution and two approaches are considered for con-
structing the region of support for the distribution (for details see [420]).

Many papers are devoted to identifying the possible number of clusters by
means of resampling procedures. We point out only a few recent contributions,
namely [311], and the Clest method [145, 179]. Indeed, such an approach is
based on the “cluster stability” concept as it was summarized and generalized
in [374, 375]. We state here an algorithm for the internal index computation
presented in these works.

1. Split the dataset of size 2t into two sets of equal size, Ot
1 and Ot

2.
2. Present the first dataset to the algorithm. The result is the mapping α1

of each of the objects in Ot
1 to one of k clusters.

3. Present the second dataset Ot
2 to the algorithm. The result is the mapping

α2 of each of the objects in Ot
2 to one of k clusters. Use α2 to predict the

cluster membership of all objects contained in the first set.
4. Set Ot

1 now has two different labels. Find the correct permutation of labels
by using the well-known Hungarian method for minimum weighted perfect
bipartite matching (see [297]). The costs for identifying labels i and j are
the number of misclassifications with respect to the labels α1, which are
assumed correct.

5. Normalize with respect to the random stability.
6. Iterate the whole procedure from Step 1 to Step 5, average over assignment

costs, and compute the expected (in-)stability value.
7. Iterate the whole procedure for each k to be tested.

An application of the Hungarian method is required since the labels of
the clusters can be permuted. A match between the labels can be found by
solving
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φ(α1, α2) = minπ
1
t

t∑
j=1

1{α1(oj) − π(α2(oj))},

where 1{·} is an indicator function and π is a permutation of k possible labels.
The Hungarian method has computational complexity of O(k3).

Normalization with respect to the random stability means:

ψk =
mean(φk(α1, α2))
mean(φk(ρ1, ρ2))

, (19)

where ρ1, ρ2 are the random predictors, which assign labels uniformly at ran-
dom. The estimated number of clusters is given by k providing the maximum
of ψk.

It has been noted by the authors that splitting the total set of objects
into two disjoint subsets is recommended because the size t of the individual
sets should be large. However, this approach can be applied formally for any
sample size.

4.2 External Criteria

We state in this part several external criteria. A formal way to do it is to
exploit external indices of partition agreement. Usually, the calculation of
these scores is based on the so-called crosstabulation, or contingency tables.
Entries mij of this table denote the number of objects that are in both clusters
i and j, i = 1, ..., r, j = 1, ..., c for two different partitions Pr and Pc. Note
that a relationship between two partitions can be considered in the framework
of the measures of association for nominal data. The most well known of
these is the Cramer correlation coefficient defined in the following way. Let us
introduce

m
(r)
i =

c∑
j=1

mij , i = 1, ..., r, m
(c)
j =

r∑
i=1

mij , j = 1, ..., c, (20)

m =
r∑

i=1

m
(r)
i =

c∑
j=1

m
(c)
j ; (21)

the row and column sums of the contingency table, and the chi-square
statistics

χ2 =
r∑

i=1

c∑
j=1

(mij − eij)2

eij
, eij =

mi · mj

m
. (22)

The Cramer coefficient is

V =

√
χ2

m · min(r − 1, c − 1)
. (23)
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Several known external indexes employ the statistics

Z =
c∑

j=1

r∑
i=1

m2
ij . (24)

Rand [366] introduced the index

R = 1 +

⎛
⎜⎜⎝

Z − 0.5 ·
(∑c

j=1

(
m

(c)
j

)2

+
∑r

i=1

(
m

(r)
i

)2
)

(
man

2

)
⎞
⎟⎟⎠ .

Jain and Dubes [242] considered the index

JD =
(Z − m)(∑c

j=1

(
m

(c)
j

)2

+
∑r

i=1

(
m

(r)
i

)2

− Z − m

) ,

and Fowlkes and Mallows [169] provided the following expression

FM =
(Z − m)

2 ·
√∑c

j=1

(
m

(c)
j

2

)∑r
i=1

(
m

(r)
i

2

) .

It is easy to see that the two indexes R and FM are linear functions of Z,
and for that reason each one is a linear function of the other. Often indexes are
standardized such that an appropriate expected value is 0 when the partitions
are selected at random and 1 when they match perfectly.

5 Sampling Approaches for Selection of Initial Centroids
for k-Means Clustering Algorithms

In this section we discuss two methods for building an initial cluster partition
based on bootstrapping and simulation techniques. The first method is an
application of the CE method. The second method applies a procedure for se-
lecting appropriate samples in the spirit of the CE method. This new approach
uses a sequential samples clustering procedure instead of the simulation step
of the CE method.

5.1 The Cross-Entropy Method in Clustering Problems

The CE method has been introduced as a new genetic approach to combi-
natorial and multiextremal optimization and rare event simulation and has
found many applications in different areas (see the CE site1). Generally, this
method consists of the following two steps:

1http://iew3.technion.ac.il/CE/about.php
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1. Generate a sample of random data that fit parameters of the underlying
distribution;

2. Update the parameters in order to produce a “better” sample in the next
iteration.

In this section we recall how the CE technique can be applied to clustering
under the assumption of the GMM (as suggested in [294]) under conditions
described in Sect. 2. First we pick two numbers:

• N , the number of simulated samples, and
• ρ, the proportion of correct (“elite”) samples.

In our case, the parameter σ2 of the GMM is assessed as

σ2 =
1
n

n∑
i=1

σ2(xi),

where σ2(xi) is the dispersion of the ith coordinate throughout the entire set
X.

The procedure is as follows:

1. Choose, deterministically or randomly, the initial means µj , j = 1, . . . , k
and set the counter t = 1.

2. Generate N sequences of k potential independent centroids {Yi = yji,
j = 1, ..., k}, i = 1, ..., N according to the normal laws yji ∼ N(µj , σ

2I)
and calculate the corresponding objective function values Ri, i = 1, . . . , N .

3. Rank the sequence Ri, i = 1, ..., N and select N elite = [ρN ] “elite” samples
corresponding to N elite smallest values of Ri, with {Yi, i = 1, ..., N elite}
centroids (we reindex the centroids as needed). The parameters are up-
dated as

µ
(t)
j =

1
N elite

Nelite∑
i=1

yji, σ2 =
1
n

n∑
j=1

Nelite∑
i=1

σ2(yji). (25)

4. If the stopping criterion is met, then stop, else set t = t + 1 and go to
Step 2.

As proposed in the CE literature, smoothed weighted updating or, the
so-called component-wise updating can be applied as an alternative method
in Step 3. There are various stopping criteria. For instance, the CE algorithm
can be terminated when the values of the objective function stabilize to within
a suitable tolerance. The method has been shown to be robust with respect to
the choice of initial centroids [294]. The CE method has several disadvantages
related mainly to the second simulation step:

1. In the case of a high-dimensional dataset a simulation procedure is com-
putationally expensive.
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2. All simulations are performed assuming that the underlying distribution
can be properly approximated by means of the Gaussian distribution. The
assumption is rarely satisfied for real data, which are often sparse, as in
the case of Text Mining applications (see for instance [60]). Evidently,
modeling of such a high-dimensional dataset by means of a mixed normal
law can lead to a big deviation from the underlying distribution. This is
an aspect of the aforementioned “curse of dimensionality.”

The method we now introduce does not simulate data by normal distribution.

5.2 Sampling Clustering Algorithm

Now we describe the Sampling Clustering Algorithm. As in the CE approach
we start with outlining the parameters:

• N , the number of drawn samples;
• M , the sample size;
• ρ, the proportion of correct ( “elite”) samples.

The algorithm consists of the following steps:

1. Take N random samples Sj , j = 1, ..., N of size M from the dataset, and
set counter t = 1.

2. Apply the k-means algorithm to partition the drawn samples and get new
centroids Yi = {yji, j = 1, ..., k}, i = 1, .., N (initial k-means centroids are
chosen randomly for t = 1 and are taken from the previous iteration for
t > 1).

3. Calculate the objective function values Ri, i = 1, ..., N for the partition
obtained in Step 2.

4. Rank the sequence Ri, i = 1, ..., N and take N elite = [ρN ] “elite” samples
corresponding to the smallest [ρN ] values of Ri, say, S1, ..., SNelite .

5. Update the centroids using the k-means algorithm for clustering the com-
bined sample

Ŝt =
Nelite⋃
i=1

Si.

Initial k-means centroids are chosen randomly for t = 1 and are taken
from the previous iteration for t > 1.

6. If the stopping criterion is met, then stop and accept the obtained cen-
troids as an estimate for the true centroids, otherwise set t = t+1 and go
to Step 2.

We denote k centroids corresponding to a partition Ŝt by {ct
1, ..., c

t
k}. The

stopping criterion is based on convergence of the set {ct
1, ..., c

t
k} as t → ∞.

However, it should be clear that ct+1
1 and ct

1 do not necessarily correspond to
the same centroid in the optimal partition of the dataset. This problem can be
overcome by means of a minimization procedure for actual misclassifications
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between two sequential steps over all possible label permutations Ψ . Specifi-
cally, let Ŝt and Ŝt+1 be two samples. We label each element of Ŝt+1 by the
nearest centroid of Ŝt and denote it as αt(Ŝt). A preferred label permutation
ψ∗ is chosen as a permutation, which leads to the smallest misclassification
between αt(Ŝt) and the permuted source tagging, i.e.,

ψ∗ = arg min(ψ ∈ Ψ | D(αt(Ŝt+1), ψ(αt+1(Ŝt+1)),

where D assigns the number of misclassifications to two partitions. Note that
we do not need to test all k! possible permutations, because this problem can
be represented as a special case of the minimum weighed perfect bivariate
matching problem. Due to the well-known Hungarian method (see [297]) the
computational complexity of this problem is O(k3). A stopping criterion can
be specified by the distortion between centroids in step t and permuted by
means of ψ∗ at step t + 1.

6 Iterative Averaging Initialization

In this section we briefly state an iterative clustering initialization method
similar to that described in our earlier paper [432]. We outline the following
parameters:

• N , the number of drawn samples;
• M , the sample size.

The centroids generating procedure is given next.

1. Choose randomly k elements c
(0)
j , j = 1, ..., k of the dataset and set t = 1

(level counter).
2. Draw sample St of size M from the dataset, and set t = t + 1.
3. Apply the k-means algorithm with initial centroids c

(t−1)
j , j = 1, ..., k to

partition the sample St and obtain new centroids c
(t)
j , j = 1, ..., k.

4. If t > M then stop, else goto step 2.

The initial centroids for the k-means clustering algorithm applied to the
entire dataset are the average of the corresponding final centroids generated
for all M samples.

6.1 Representative Samples

We consider random samples Sj , j = 1, . . . , N with replacement. For a given
sample S we denote by si the cardinality of S ∩ πi, i.e., si = |S ∩ πi|. We
denote (s1 + . . . + sk) by s and min{s1, · · · , sk} by s0. Due to the assumption
on disjoint clusters, the mutual distribution of the variables s1, . . . , sk is a
multinomial, i.e.,
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P (s1 = v1, . . . , sk = vk) =
s!

v1! · · · vk!
pv1
1 · · · pvk

k , (26)

which implies the binomial distribution Bin(s, p) with parameter p = pi for
each variable si

P (si = v) =
s!

v!(s − v)!
pv

i (1 − pi)n−v, v = 0, 1, . . . , s. (27)

In what follows we focus on the binomial model. We use the normal approx-
imation to the binomial distribution (see, for example, [160], part 7). The
binomial distribution Bin(s, p) with parameters s and p can be approximated
by the normal distribution with mean E(X) = sp and the standard deviation
σ =

√
sp(1 − p) for large s (e.g., s > 20), and p bounded away from 0 and 1

(for example, 0.05 < p < 0.95). One of the approximations can be described
as follows (see [292], p. 101):

9 < sp(1 − p),
1

s + 1
<p<

s

s + 1
, and 1.07 < sp3/2, (28)

then for each x we have∣∣∣∣∣F (x) − Φ

(
x + 0.5 − sp√

sp(1 − p)

)∣∣∣∣∣ ≤ 0.05 (29)

where Φ is the cumulative distribution function of the standard normal distri-
bution and F (x) is the commutative distribution function of Bin(s, p). This
approximation can be obtained from the convergence rate of the central limit
theorem for the binomial distribution. For p = p0 we choose the sample size
s to satisfy the inequalities in (28). The choice of s yields (29) for all x and
all pi, i = 1, . . . , k.

While sampling we will consider centroids of sample clusters as random
variables. Since a centroid is an arithmetic mean of a cluster’s elements, the
variance of the centroids’ coordinates is bounded from above by σ2/s0. To
ensure a high probability P (say P ≥ 0.9) to obtain samples as described
above we set F (s0) ≤ 1 − P . Due to (29) this inequality yields

Φ

(
s0 + 0.5 − sp0√

sp0(1 − p0)

)
≤ 0.95−P , and s0+0.5−sp0 = γP ·

√
sp0(1 − p0). (30)

Here γP is a quintile of the standard normal distribution Φ (γP ) = 0.95 − P
(i.e., γP = −1.65, if P = 0.9). The lower bounds s for the sample size s with
s0 = 10, P = 0.9, γP = −1.65, for a variety of values for p0 follow from (28)
and (30) and are given in Table 1.

6.2 Resampling

For a given set of centroids M we generate the initial centroids for the
k-means like algorithm as the arithmetic mean of the sample centroids. We
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Table 1. Bounds s for the sample size

p0 9/p0(1 − p0) 1.07/p
3
2
0 10.5 − sp0 = −1.65

√
sp0(1 − p0) s

0.05 190 96 344 344

0.1 101 34 169 169

0.15 71 19 112 112

0.2 57 12 82 82

0.25 49 9 66 66

0.3 43 7 54 54

0.35 40 6 46 46

0.4 38 5 39 39

0.45 37 4 34 37

0.5 36 3 31 36

note, however, that the described procedure does not guarantee that corre-
spondent sampling centroids belong to the same cluster in the “true” dataset
partition. If this is not the case the suggested “arithmetic mean” formula be-
comes questionable. One way to overcome this difficulty is to use the maximal
matching procedure mentioned in Sect. 5. In our case we have to employ this
methodology for a comparison between two single samples. We recall that a
sample is constructed by the union of several “elite” samples. Since in this sec-
tion we do not work with samples’ union, the procedure may fail to generate
good results.

In what follows we introduce conditions under which the “arithmetic
mean” formula is justified in the framework of the GMM. The results are
provided at a significance level α and we denote by Z1−α/2 the 1−α/2 quan-
tile of the standard normal distribution. Consider now sample S1 and denote
the arithmetic mean of the cluster S1 ∩ πi by µ1

i . We estimate the distance
from the “true” cluster πi center µi and the sample’s mean µ1

i . From normality
of the probability distribution of each cluster one has

∥∥µi − µ1
i

∥∥ ≤ Z1−α/2

√
n

s0
σ. (31)

We wish to choose the sample size so that∥∥µ1
i − µi

∥∥ <
∥∥µ1

i − µt

∥∥ , t �= i (32)

(see Fig. 1). It is easy to see that this condition is satisfied if

4Z1−α/2

√
n

s0
σ < ‖µt − µi‖ . (33)

This inequality leads to the lower bound for s0 as follows:
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Fig. 1. Centroid separation, r = 2Z1−α/2

√
n
s0

σ and R = ‖µt − µi‖

16Z2
1−α/2nσ2

d2
µ

< s0, (34)

where
dµ = min

t,i
(‖µt − µi‖ , t �= i). (35)

Substituting s0 by its average value sp0 we obtain:

16Z2
1−α/2nσ2

p0d2
µ

< s. (36)

Finally we denote

τ =
dµ

σ
(37)

and simplify this so that the lower bound for the sample size s becomes

16Z2
1−α/2n

p0τ2
< s. (38)

This yields (32). Note that the ratio τ is unknown. In Sect. 6.3 we estimate this
ratio using a resampling procedure. The estimate for τ (see (51)) completes
the section.

6.3 Ratio Estimation

Consider several samples Sj , j = 1, 2, ... from the dataset X and denote
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π
(j)
t = Sj ∩ πt, t = 1, . . . , k. (39)

We write the “final” centroids of these clusters as

c
(j)
t (f) = µt + εt, t = 1, ..., k, (40)

where εt are random vectors with normally distributed independent coor-

dinates having mean zero and standard deviations σ

√
1/
∣∣∣π(j)

t

∣∣∣. We denote

µt1 − µt2 + εt1 − εt2 by Lt1 ,t2 and provide the following expression for the
squared distance between two final sample centroids:

D
(j)
t1,t2 =

∥∥∥c(j)
t1 (f) − c

(j)
t2 (f)

∥∥∥2

= ‖Lt1 ,t2 ‖2
. (41)

Generally, the random values D
(j)
t1,t2 are not independent. For instance, the

covariance matrix of Lt1,t2 and Lt2,t3 is

cov (Lt1,t2 , Lt2,t3) =
σ2∣∣∣π(j)
t2

∣∣∣I (42)

where I is the n × n identity matrix. However, as sample size grows the
correlation tends to 0. We disregard this dependence and write

D
(j)
t1,t2 = (σ(j)

t1,t2)
2

∥∥∥∥∥µt1 − µt2

σ
(j)
t1,t2

+ εt1,t2

∥∥∥∥∥ , (43)

where εt1,t2 are standard normally distributed vectors with independent co-
ordinates and

σ
(j)
t1,t2 = σ

√√√√ 1∣∣∣π(j)
t1

∣∣∣ +
1∣∣∣π(j)
t2

∣∣∣ . (44)

Due to the model assumptions of equal standard deviations for all the vector
coordinates, an efficient accurate estimate for σ can be obtained through the
averaging

σ̃ =
1
n

∑
x∈X

σ(xi) (45)

where σ(xi) is the sample standard deviation of the ith coordinate of vectors
x ∈ Sj . We replace σ by σ̃ and consider the worst-case scenario of equal size
clusters

D
(j)
t1,t2 = σ2

ν

∥∥∥∥µt1 − µt2

σ̃ν
+ ε

∥∥∥∥2

standard normal distributed coordinates, ν is a cluster size, and

σ2
ν =

2σ2

ν
.
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Hence

τ
(j)
t1,t2 =

D
(j)
t1,t2

σ2
ν

has a noncentral chi-square distribution and one has to estimate the value

τ
(j)
0 = min

t1<t2
(τ (j)

t1,t2).

Note that the distribution of D
(j)
t1,t2 is independent of j. This is commonly the

case for sampling with replacement. For n independent standard normally
distributed random variables Z1, ..., Zn and constants δ1, ..., δn the random

variable d =
n∑

j=1

(Zj + δj)2 has a noncentral chi-squared distribution with n

degrees of freedom and noncentrality parameter

λ =
n∑

j=1

δj
2 (46)

(see, for example, [250]). If λ = 0 the distribution is the well-known regular chi-
squared distribution. If λ �= 0 it is the noncentrally chi-squared distribution.
The mean of this distribution is given by

µ = n + λ. (47)

We note that there is no standard definition of the noncentrality parameter in
the literature. Some authors denote the parameter as λ, while others divide the
right-hand side in (46) by 2. There are a number of different representations
for the density function of the chi-squared noncentral distribution by means of
various series expansions. An alternative approach is to use the appropriate F
ratio instead of separate estimation of the parameter σ. This leads to a more
complicated model of F noncentral distribution and will not be pursued in
this chapter.

In the present case the noncentrality parameter of τ
(j)
t1,t2 is

λ
(s)
t1,t2 =

‖µt1 − µt2‖2

σ2
ν

. (48)

If we denote by χ2 (x, λ
(s)
t1,t2 , n) the cumulative distribution function (cdf) of

τ
(s)
t1,t2 , then the cdf of τ

(s)
0 is given by

F (x) = 1 − ∏
t1<t2

(1 − χ2(x, λ
(s)
t1,t2 , n)). (49)

Estimation of the parameters in this expression is a very difficult problem due
to the complicated form of F (x). However, we use a normal approximation
of χ2 (x, λ

(s)
t1,t2 , n) for large values of the noncentrality parameter λ. As nu-

merical experiments show for λ > λ0 = 100 the cdf of χ2 (x, λ
(s)
t1,t2 , n) is well
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approximated by the normal distribution and F (x) is well approximated by
χ2(x, λ

(s)
0 , n). Hence we assume that

F (x) ≈ χ2
(
x, λ

(s)
0 , n

)
, where λ

(s)
0 = min

t1<t2
λ

(s)
t1,t2 .

Let
(tm1 , tm2 ) = arg min

t1<t2

λ
(s)
t1,t2 , (50)

that is µtm
1

and µtm
2

are the nearest centroids of Π = {π1, . . . , πk}. We use an

appropriate selection of the sample size to approximate the cdf χ2(x, λ
(s)
0 , n)

by the normal distribution. The algorithm suggested here is based on (47).
For a user-supplied positive tolerance tol do the following:

1. Set counter t = 1.
2. Set j = 1.
3. Draw random sample Sj of size s (if t = 1, then pick s from Table 1).
4. Use the k-means clustering algorithm to partition Sj into k clusters.
5. Compute σ̃.
6. Compute τ

(j)
0 , using centroids of Sj instead of µti

to evaluate D
(j)
t1,t2 .

7. Average τ
(j)
0 over M samples S1, . . . , SM .

8. If the stopping criterion
∣∣∣τ (j)

0 − τ
(j−1)
0

∣∣∣ < tol ∗ τ
(j)
0 is met

then if [τ (j)
0 >

√
λ0]

then stop and accept the resulting parameter τ0

else set s = 2s, t = t + 1 and goto step 2.
else set j = j + 1 and goto step 3.

We replace the average µ by τ0 in (47), λ by its value from (48) with
(tm1 , tm2 ), and σ2

ν by its expression and obtain

sp0

2
(τ0 − n) =

‖µt1 − µt2‖2

σ2
.

This yields the following estimate for τ

τ =

√
(τ0 − n)

2
sp0. (51)

One can also employ an extended procedure consisting of parallel estimation
of the ratio and construction of initial centroids. That is, one can execute the
averaging of cluster centroids with an appropriate choice of the initial centroids
at every iteration as described above. We shall not pursue this approach in
this chapter.

The initial centroids for the k-means like clustering algorithm applied to
the entire dataset are the average of the corresponding final centroids gener-
ated for all M samples as described in Sect. 6.2.



Sampling Methods for Building Initial Partitions 183

7 Numerical Experiments

In order to evaluate the algorithms described in Sect. 5, we quantify how
well the clustering results correspond to the “true” data structure. Dhillon
and Modha [136] have used the spherical k-means algorithm for clustering
text data. In one of the experiments of [136] the algorithm was applied to
a data set containing 3,893 documents. This dataset has been considered in
several works, (see for example [278, 279, 281, 432]). This dataset is known to
be well separated. (The dataset is available at ftp://ftp.cs.cornell.edu/
pub/smart)

• DC0–Medlars Collection (1,033 medical abstracts);
• DC1–CISI Collection (1,460 information science abstracts);
• DC2–Cranfield Collection (1,400 aerodynamics abstracts).

We selected 600 “best” terms (see [133] for term selection details), and
calculated the 30 leading principal components. Note that each component
covers no more than 5% of the total dispersion. Therefore we compared two
projection pursuit indexes of Friedman, and Intrator and Cooper (see Sect. 3).
Multimodality of the components’ distributions can be observed only for the
first two components. This fact is reflected by the behavior of the Intrator
and Cooper index. The Friedman index is more sensitive to departure from
normality in the tails of the distribution. The fifth component possesses the
heaviest tail. Figures 2 and 3 present graphs of the two indexes.

However, the Intrator and Cooper index allocates precisely the two leading
components as the informative features. Partitions into three clusters using
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Fig. 2. The Intrator and Cooper index
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Fig. 3. The Friedman index

Table 2. Sample size is 40. Number of samples is 30

Number of Method Misclassified Time Iterations Cramer Rand
components items (s)

2 SCA 127 4.14 2 0.950 0.958

2 Optimization 152 4.78 2 0.940 0.951

2 CE 732 19.59 6 0.731 0.816

5 SCA 118 5.98 3 0.953 0.961

5 Optimization 122 5.89 2 0.952 0.960

5 CE 520 60.78 18 0.813 0.839

10 SCA 125 21.02 33 0.951 0.959

10 Optimization 108 190.11 45 0.957 0.964

10 CE 637 230.64 67 0.779 0.815

the “näıve approach” were built by the described algorithms. The results are
compared by means of misclassification quantities, the Cramer correlation
coefficient, and the clustering matching Rand’s coefficient, see Sect. 4.2. In
addition, we consider a modification of the Sampling Clustering Algorithm,
which consists of applying a search optimizing procedure for the objective
function R̂ constructed on the sample Ŝt (we suggest ρ = 0.25). Tables 2 and 3
summarize outcomes obtained for two “extreme” cases that samples with
replacement cover about 30% and 150% of the data, respectively. We conclude
that the Sampling Clustering Algorithm seems to be more robust and reliable
for each choice of the principal components presented.
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Table 3. Sample size is 80. Number of samples is 80

Number of Method Misclassified Time Iterations Cramer Rand
components items (s)

2 SCA 140 5.55 2 0.945 0.954

2 Optimization 152 15.78 2 0.940 0.951

2 CE 236 49.67 7 0.912 0.926

5 SCA 94 8.23 2 0.963 0.969

5 Optimization 123 32.58 2 0.951 0.960

5 CE 396 116.31 18 0.853 0.880

10 SCA 103 18.92 3 0.959 0.966

10 Optimization 99 42.78 2 0.961 0.967

10 CE 831 202.13 29 0.781 0.781
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tmg: A MATLAB Toolbox for Generating
Term-Document Matrices from Text
Collections

D. Zeimpekis and E. Gallopoulos

Summary. A wide range of computational kernels in data mining and informa-
tion retrieval from text collections involve techniques from linear algebra. These
kernels typically operate on data that are presented in the form of large sparse
term-document matrices (tdm). We present tmg, a research and teaching toolbox
for the generation of sparse tdms from text collections and for the incremental mod-
ification of these tdms by means of additions or deletions. The toolbox is written
entirely in MATLAB, a popular problem-solving environment that is powerful in
computational linear algebra, in order to streamline document preprocessing and
prototyping of algorithms for information retrieval. Several design issues that con-
cern the use of MATLAB sparse infrastructure and data structures are addressed.
We illustrate the use of the tool in numerical explorations of the effect of stemming
and different term-weighting policies on the performance of querying and clustering
tasks.

1 Introduction

Much of the knowledge available today is stored as text. It is not surprising,
therefore, that data mining (DM) and information retrieval (IR) from text
collections (text mining) has become an active and exciting research area; see
for example [399]. As the vector space model (VSM) and matrix and vector
representations are routinely used in DM and IR, it turns out that several per-
formance critical kernels in these areas originate from computational linear
algebra (CLA). Consider, for example, two typical operations: clustering and
querying in the context of the VSM. Algorithms that implement them rely on
modules standing at various levels in the hierarchy of linear algebra compu-
tations, from inner products to eigenvalue and singular value decompositions
(SVD). As a result, the fields of DM and IR have been providing the ground
for synergistic efforts between application specialists and researchers in CLA.
The latter researchers understand the intricacies of designing effective matrix
computations on modern computer system platforms, commonly used in DM
and IR and contribute the design of performance critical kernels for DM and
IR algorithms; see, for example [61,63,65,76,136,272,275].
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This chapter presents tmg, a toolbox that helps the user in the two major
phases of the VSM: the preprocessing, “indexing” phase, in which the index of
terms is built, and the “search” phase, during which the index is used in the
course of queries and other operations. In particular, tmg preprocesses docu-
ments to construct an index in the form of a sparse “term-document matrix,”
hereafter abbreviated by “tdm,” and preprocesses user queries so as to make
them ready for the application of an IR model. tmg is specifically oriented
to the application of vector space techniques (see, e.g., [124, 310, 456]) that
model documents as term vectors so that many IR tasks can be cast in terms
of CLA. We will use the convention that m × n matrices represent tdms of
n documents over an index of m terms. In view of the significant presence of
CLA kernels in vector space techniques for IR, we felt that there was a “mar-
ket need” for a MATLAB-based tdm generation system, as MATLAB is a
highly popular problem-solving environment for CLA that enables the rapid
prototyping of novel IR algorithms [7]. Therefore, tmg is written entirely in
MATLAB and runs on any computer system that supports that environment.
Even though MATLAB started as a “Matrix Laboratory,” it is now equipped
with a large number of facilities including data structures, functions, visual-
ization, and interface building tools that make possible the rapid synthesis of
entire suites of special purpose algorithms. Furthermore, it claims a very large
user base that continuously contributes new software (such as tmg) on the
Web.1 See [191, 205], for example, for toolboxes that specialize in operations
related to IR, e.g., algorithms based on spectral analysis of sparse matrices
encapsulating graph structures.

tmg parses single files or entire directories of multiple files containing
text, performs the necessary preprocessing, and constructs a tdm according
to parameters set by the user. It is also able to renew existing tdms by per-
forming efficient updates or downdates corresponding to the incorporation of
new documents or deletion of existing documents.

We must emphasize that two critical components for tmg’s operations are
MATLAB’s sparse matrix infrastructure and visualization tools. tmg can be
used to complement algorithms and tools that work with tdms, e.g., [22, 61,
63,76,136,289]. For example, tmg was used in recent experiments, including
in [286, 364, 452, 453], and has already been requested by many researchers.
We also expect tmg to be useful in instructional settings, by helping to create
motivating examples in CLA and IR courses.

tmg is not tied to specific algorithms of the vector space model but in-
cludes, for convenience, MATLAB code for querying and clustering that can
be used as template by users who want to perform such tasks with tmg. Inter-
facing tmg with codes in other languages is quite straightforward as there are
several utilities for converting the objects in the underlying MATLAB stor-
age class to other formats. The cluto clustering toolkit [257], for example,

1See, for example, the Link Exchange Center, www.mathworks.com/matlab cen-
tral/fileexchange
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inputs ascii files containing the compressed sparse row (CSR) representa-
tion of matrices that can be obtained from tmg, while sddpack [289] pro-
vides MATLAB routines for converting to and from the Matrix Market
format [74]. tmg was designed to provide several term-weighting options to
the user [60,290] as well as the possibility of stemming. In addition to describ-
ing the design of the tool, we also report herein on the application of tmg as a
preprocessor for IR tasks and its combination with a variety of term-weighting
functions and stemming.

This chapter is organized as follows. In the rest of this section we briefly
review some related efforts. Section 2 presents tmg, describing all its core func-
tions, including the graphical user interface (GUI) and analyzing the various
options that are provided in the package. Section 3 describes implementation
issues, in particular the utilization of MATLAB’s sparse matrix technology.
Section 4 demonstrates the use of tmg on a public dataset, called BibBench,
and compares the performance of some query answering and clustering algo-
rithms based on vector space models using various term-weighting schemes
and stemming for data from the medline, cranfield, cisi2 and reuters-
215783 collections. Section 5 provides concluding remarks. All numerical ex-
periments were conducted on a 3 GHz Pentium 4 PC with 512 MB RAM
running Windows XP and MATLAB 7.0. Runtimes were measured using
MATLAB infrastructure for performance analysis, specifically profile and
timing functions tic, toc.

1.1 Related Work

There exist already several tools for constructing tdms since IR systems that
are based on vector space techniques (e.g., Latent Semantic Indexing, hereafter
abbreviated as LSI) typically operate on rows and columns of such matrices;
see, e.g., [5,310,379]. The Telcordia LSI Engine, for example, is a production-
level IR architecture that contains components for generating sparse tdms
[9, 106] from text collections. Lemur [6] is a popular language modeling and
IR toolkit written in c++. A recent powerful system that we have found
to be particularly effective is the General Text Parser (gtp) [4, 192]. gtp
is a complete IR package written in C++ and Java and employing LSI; we
used it to evaluate the results obtained from tmg. pgtp is an mpi-based
parallel version of gtp. Other tools that one can find in the open literature
are Doc2mat [3], written in perl and developed in the context of the cluto
IR package [257]; mc [8], written in c++ [129,136]; and the Unix shell script
utility countallwords included in the pddp package [77]. The above tools are
implemented in high level or scripting languages (e.g., C, C++, Java, Perl).
It is fair to say at the outset and will become clear from our description that
tmg’s current design is best suited for datasets of moderate size. For very
large datasets, one would be better served by systems such as gtp.

2Available from ftp://ftp.cs.cornell.edu/pub/smart/
3Available from http://kdd.ics.uci.edu/
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2 The Text to Matrix Generator

2.1 Outline

tmg is constructed to perform preprocessing and filtering steps that are typ-
ically performed in textual IR [40] (the names of the relevant MATLAB
m-functions are in parentheses):

- Creation of the tdm corresponding to a set of documents (tmg);
- Creation of query vectors from user input (tmp query);
- Updation of existing tdm by incorporation of new documents (tdm update);
- downdation of existing tdm by deletion of specified documents (tdm down-

date).

The document preprocessing steps encoded by tmg are the following:
(i) lexical analysis; (ii) stopword elimination; (iii) stemming; (iv) index-term
selection; (v) index construction. These steps are tabulated in Table 1.

Each element, αij , of a tdm can be expressed as

αij = lijginij , (1)

where lij is a local factor that measures the importance of term i in document
j, gi is a global factor that measures the importance of term i in the entire
collection, and nij is a normalization factor [380]. This latter is used to mod-
erate bias toward longer documents [398]. The local, global term weighting
and normalization options available in tmg are listed in Table 2. Symbol fij

denotes term frequency, i.e., the number of times term i appears in document
j; also,

pij =
fij∑
k fik

, and b(fij) =
{1, if fij �= 0

0, if fij = 0.

Table 1. Steps in function tmg

Function tmg

Input: filename, OPTIONS
Output: tdm, dictionary, and several optional outputs;
parse files or input directory;
read the stoplist;
for each input file,

parse the file (construct dictionary);
end
normalize the dictionary (remove stopwords and too long
or too short terms, stemming);
construct tdm;
remove terms as per frequency parameters;
compute global weights;
apply local weighting function;
form final tdm;
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Table 2. Term-weighting and normalization schemes [60,110,290,380]

Symbol Name Type

Local term-weighting (lij)

t Term frequency fij

b Binary b(fij)
l Logarithmic log2(1 + fij)
a Alternate log [290] b(fij)(1 + log2 fij)
n Augmented normalized (b(fij) + (fij/ maxk fkj))/2

term frequency

Global term-weighting (gi)

x None 1
e Entropy 1 + (

∑
j
(pij log2(pij))/ log2 n)

f Inverse document log2(n/
∑

j
b(fij))

frequency (IDF)
g GfIdf (

∑
j
fij)/(

∑
j
b(fij))

n Normal 1/
√∑

j
f2

ij

p Probabilistic inverse log2((n −∑
j
b(fij))/

∑
j
b(fij))

Normalization factor (nij)

x None 1

c Cosine (
∑

j
(gilij)

2)−1/2

It must be noted that tmg does not restrict the separating delimiter to
be an end-of-file character; hence the number of documents corresponding to
the collection would be at least as large as the actual number of (valid) files
processed by tmg.

2.2 User Interface

The user interacts with tmg by means of any of the aforementioned MAT-
LAB functions or via a GUI, implemented as function tmg gui. The GUI
facilitates user selection of the appropriate options among the many alterna-
tives available at the command-line level. A user who desires to construct a
tdm from text will either use tmg or tmg gui. The specific invocation of the
former is of the form:

outargs=tmg(‘fname’, OPTIONS);

where outargs stands for the output list:

[A, dictionary, global wts, norml factors, words per doc, titles, files,

update struct].

The tdm is stored as a MATLAB sparse double array A, while dictionary
is a char array containing the collection’s distinct words, and update struct
contains the essential information for the collection’s renewal (see Sect. 3.3).
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Table 3. tmg outputs

A resulting tdm;

dictionary collection’s dictionary (char array);

global wts vector of global weights

norml factors vector of document norms prior to normalization;

words per doc vector containing statistics for each document;

titles titles of each document (cell array);

files processed filenames with set title and document’s
first line (cell array);

update struct structure containing necessary data for renewal;

The other output arguments store statistics for the collection. The full list of
output arguments is tabulated in Table 3.

Argument fname specifies the individual file(s) to be processed or the di-
rectory name that contains them. In the latter case, tmg recursively processes
included subdirectories and files. It is assumed that all files contain valid data.
In particular, files are assumed to contain plain ascii text or that a special
filter that can convert them to such a format is available and properly linked
to tmg. Currently, tmg can process Adobe Acrobat pdf and PostScript
documents provided Ghostscript’s ps2ascii utility is available. Filenames
suffixed with html or htm are assumed to be ascii files with html markups;
tmg processes them by stripping the corresponding tags using the strip html
function.

The options available at the command line to the user of tmg are set via
the fields of the MATLAB OPTIONS structure tabulated in Table 4. Field
delimiter specifies the delimiter that separates individual documents within
the same file. The default delimiter is a blank line, in which case tmg is likely
to generate more “documents” than the number of files given as input. Field
line delimiter specifies if the delimiter takes a whole line of text. Field
stoplist specifies the file containing the stopwords, i.e., the terms excluded
from the collection’s dictionary [60]. The current release of tmg contains a
stoplist obtained from gtp [4]. Field stemming indicates whether stemming
is to be used; this is performed by stemmer, our MATLAB implementation
of a modified version of Porter’s algorithm [361, 362]. stemmer can also be
called directly from the command line. To validate our implementation, we
compared our results and verified that they coincided with the word list and
corresponding stems listed in [361].

In the current version of tmg, stopword removal takes place before stem-
ming. Therefore, care is required in adding terms in the stoplist, as we might
need to provide their variants as well. In particular, if in a bibliography file
we wish to dispose of the words “author” and “authors” we would need to
add both to the stoplist. It is easy to alter this in tmg so as to apply stem-
ming on the stoplist as well as on the dictionary. One disadvantage is that
this could lead to the removal of terms that share the same stem with a stop-
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Table 4. OPTIONS fields

delimiter String specifying the “end-of-document” marker
for tmg. Possible values are emptyline (default),
none delimiter (treats each file as a single docu-
ment) or any other string

line delimiter Variable specifying if the delimiter takes a whole
line of text (default, 1)

stoplist Filename for stopwords (default no name, mean-
ing no stopword removal)

stemming A flag that indicates if stemming is to be applied
(1) or not (0) (default stemming=0)

min length Minimum term length (default 3)

max length Maximum term length (default 30)

min local freq Minimum term local frequency (default 1)

max local freq Maximum term local frequency (default Inf)

min global freq Minimum number of documents for a term to ap-
pear to insert it in the dictionary (default 1)

max global freq Maximum number of documents for a term to ap-
pear to insert it in the dictionary (default Inf)

local weight Local term weighting function (default ‘t’, possi-
ble values ‘t’, ‘b’, ‘l’, ‘a’, ‘n’)

global weight Global term weighting function (default no global
weighting used, ‘x’, possible values ‘x’, ‘e’, ‘f’, ‘g’,
‘n’, ‘p’)

normalization Flag specifying if document vectors are to be nor-
malized (‘c’) or not (‘x’) (default)

dsp Flag specifying if results are to be printed in the
command window (1, default) or not (other)

word. Another option that would be easy to incorporate in tmg is to use two
stoplists: one containing basic stopwords and the other, a stoplist generator,
for domain-specific terms that would be useful to preprocess by stemming
and then use it as stoplist. Overall, given the current options in tmg, it is
not difficult to enrich the current filtering steps to help process “dirty text,”
containing typos, adhoc abbreviations, special symbols, etc. [99].

Parameters min length, max length are thresholds used to exclude terms
that are out of range; e.g., terms that are too short are likely to be of little
value in indexing while very long ones are likely to be misprints. Parameters
min local freq, max local freq, min global freq, and max global freq
are also filtering parameters, thresholding based on frequency of occurrence.
The last OPTIONS field, dsp, indicates if the intermediate results are printed
on the MATLAB command window.

Function tmg query uses the dictionary returned by tmg and constructs,
using the same processing steps as tmg, a “term query” array whose columns
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are the (sparse) query vectors for the text collection. The function is invoked
as follows:

[Q, wds per query, titles, files]=tmg query(‘fname’,dictionary, OPTIONS);

Here, OPTIONS contains fields that are a subset of those used in tmg; for details
see the code documentation.

Graphical User Interface

As described thus far, the main toolbox functions tmg and tmg query offer a
large number of options. Moreover, it is anticipated that future releases will
further increase this number to allow for additional flexibility in operations
and filetypes handled by tmg. In view of this, a GUI we would be calling
tmg gui, which is depicted in Fig. 1, was created to facilitate interaction. This
is instantiated by means of function tmg gui. The GUI design was facilitated
by the interactive MATLAB tool GUIDE. tmg gui consists of two frames: one
provides a set of four mutually exclusive radio buttons, corresponding to the
basic functions of tmg, along with a set of radio buttons, edit boxes, lists,
and toggle buttons for all required input arguments; the other provides a set
of items for the optional arguments of tmg, tmg query, and update routines.
After specifying all necessary parameters, and the Continue button is clicked,
tmg gui invokes the appropriate function. The progress of the program is
shown on the screen; upon finishing the user is queried if and where he wants
the results to be saved; results are saved in MATLAB-mat file(s), i.e., the file
format used by matlab for saving and exchanging data.

3 Implementation Issues

We next address some issues that relate to design choices made regarding the
algorithms and data structures used in the tool. Overall, tmg’s efficiency is
greatly aided by the use of MATLAB’s sparse matrix infrastructure and an
effective implementation of inverted indexes.

3.1 Sparse Matrix Technology

One important goal in the design of tmg was to employ data structures that
would be efficient regarding: (i) the costs of creating and updating them,
(ii) the overall storage requirements, and (iii) the processing of the kernel
IR operations. Tdms are usually extremely sparse; e.g., see Table 10 that
tabulates the statistics for some well-known collections used to benchmark
IR algorithms, and Table 7 for the statistics for our BibBench collection:
Approximately 98% or more of the entries of the corresponding tdms are 0.
Therefore, a natural object for representing tdms is the sparse matrix. Indeed,
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Fig. 1. tmg gui

with the current popularity of VSM-based techniques, sparse matrix repre-
sentations have become popular in IR and are the subject of investigation;
see e.g., [194, 238]. It is worth noting that recent studies suggest that sparse
matrices are preferable for IR over other implementations, such as inverted
indexes [194, 195]. Inverted indexes, for example, complicate the implemen-
tation of non-Boolean searches and dimensionality reduction transformations
that are at the core of LSI [39]. Nonetheless, tmg employs an inverted index
as an intermediate data structure to aid in the assembly of the sparse tdm.

After parsing the collection (cf. Sect. 3.2), cleaning and stemming the dic-
tionary, each cell array for the posting list is copied to another, each element
of which is a MATLAB sparse column vector of size n. This latter array is
finally converted to the sparse tdm using function cell2mat.

MATLAB provides an effective environment for sparse computations
built around the concept of a “sparse array,” a special MATLAB class that
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economizes storage and operations by utilizing mature technology; see [189,
190] for an excellent, early, technical description. Sparse matrices in MAT-
LAB are stored internally in the well-known compressed sparse column format
(CSC), which formally consists of two arrays of length equal to the number of
nonzero entries, nnz, one consisting of reals containing the values of the matrix
elements in column major order and the other integer containing the corre-
sponding row indices; and an array of size n+1 containing an integer index to
the previous two arrays indicating the location of the leading nonzero entry of
each column and the value of nnz at the last position. Actually, upon the cre-
ation of a sparse matrix, MATLAB uses an estimate, nzmax(A) for the num-
ber of its nonzeros (equal or larger than the actual value of nnz) and allocates
enough storage to store the matrix in the above format [189]. Current versions
of MATLAB use 8 byte reals and 4 byte integers so that the total workspace
occupied by a sparse nonsquare tdm A is Mem(A) = 12nzmax(A) + 4(n + 1)
bytes. Therefore, for non square matrices, the space requirements are asym-
metric, in the sense that Mem(A) �= Mem(A�), though the storage difference
is 4|m−n|, which is small relative to the total storage required. By expressing
and coding the more intensive manipulations in the tmg toolbox in terms of
MATLAB sparse operations, the cost of operating on tdms becomes propor-
tional to the number of real arithmetic operations on nonzero elements or the
size of the data size of the tdm (that is, size of output and input participating
nontrivially in the computation of the output), whichever is larger. Formula
(1), for example, implies that the tdm can be obtained from the application
of element-by-element operations on the sparse matrix containing the terms
fij to obtain the local weights, followed by element-by-element multiplica-
tion with the tdm followed by left multiplication with the diagonal matrix
(in sparse format) containing the global weights gi. Table 5, for example,
shows MATLAB statements for building the tdm for scheme lnc. New term
weighting formulas (e.g., [110]) can be easily programmed in the system.

It is worth noting here that had we opted to build the target tdm directly as
a sparse matrix in the course of the reading phase, it would have necessitated
fast updates (creating new rows and columns, changing individual elements),
which would have been inefficient, especially in the absence of a good a priori
estimate of the matrix size and total number of nonzeros.

As already mentioned, sparse representations are employed by other sys-
tems as well. gtp and the Telcordia LSI Engine systems, for example, use
the Harwell–Boeing format [4, 106, 192], while the mc toolkit [8] also uses

Table 5. MATLAB commands to build the tdm A for scheme lnc from the frequency
table F = (fij)

[i, j, L]= find(F); L=log2(L+1);

A=sparse(i, j, L, size(F,1),size(F, 2))

A = spdiags(1./sqrt(sum(F.^2,2)), 0, size(F,1), size(F,1))*A;

A = A*spdiags(1./sqrt(sum(A.^2,1))’, 0, size(A,2), size(A,2));
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Fig. 2. tmg runtimes (s) vs. the number of nonzeros in the tdm (left); vs. the
number of documents (right)

the CSC format. The authors of [194] use the CSR format to store instead
“document-term” matrices; this, of course, is equivalent to our approach. On
the other hand, the experiments in [238] assume a CSR representation for
term-document matrices.

We next experimentally illustrate the dependence of tmg’s runtime on
aspects of the dataset size. In this as well as in Sect. 4, we experimented with
datasets created from the reuters-21578 collection. We kept only those texts
that contained nonempty text bodies and called the resulting set, consisting
of 19,042 documents, reut-all. We then organized the collection in 22 files,
which we labeled reuti, where i = 1, . . . , 22. In the sequel, we would be using
the notation reut[i : j] to denote the dataset consisting of files reuti up to
and including reutj.

Figure 2 shows the runtimes of tmg to build tdms from each of the 22 file
collections reut1, reut[1 : 2], up to reut[1 : 22], vs. the number of nonzero
elements and the number of documents. The figure suggests that the time
taken by tmg depends linearly on the number of nonzeros of the tdm. The
dependence also appears to be linear in the number of documents. We also
illustrate the performance of two kernel CLA operations for IR, specifically
matrix–vector multiplication and the computation of the largest singular value
and corresponding singular vectors using the native MATLAB function for
sparse SVD (svds); the latter is based on the implicitly restarted Arnoldi
method [308]. Results are shown in Fig. 3.

3.2 Dictionary Construction

Central to the operation of tmg are the steps of document parsing and dic-
tionary construction. tmg reads each document using function strread. This
returns the tokens present in its input char array in a cell array of chars. All
distinct terms present in the document are then obtained in a sorted order via
function unique. At the same time, the procedure creates a (local) posting list
for these terms, that is, pairs containing the number of occurrences and the
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Fig. 3. Runtimes (s) of matrix–vector multiplication (left) and SVD (right) where
the matrix is the tdm constructed by tmg vs. the number of nonzeros in the
tdm

document identifier for each term. Assuming that we keep a “running inverted
index” of all documents processed up to step i − 1, we can apply the proce-
dure iteratively as follows: at steps i = 2, . . ., we first create the local term
vector and posting list and then use it to update the running inverted index.
One weakness of this approach is that it requires as many calls to functions
unique and ismember as there are documents, something that we found to be
very time consuming. Another approach would be to proceed by appending to
the dictionary’s cell array the new terms in the document and keeping track
of the document indices containing each word. This would necessitate only
one call to unique to form the inverted index but with high cost in memory,
since we would need to store first all tokens in the collection. The memory
penalty is further accentuated by the fact that cell data structures have a
higher memory overhead than sparse numeric arrays. Based on the above ob-
servations, we designed a simple but effective scheme to construct the inverted
index. In particular, we still use a running inverted index but update it using
a block inverted index consisting of data from N documents at a time. The
functions that implement the above operations are called unique words and
merge dictionary, while we use update step to designate the block size N .
Selecting N = n or N = 1, the above approach reduces to the first and second
of the aforementioned methods. Figure 4 depicts the runtimes of tmg for the
reut-all collection, for N = [10, 20, 50, 100, 200, 500, 1000 : 1000 : 10000].
As we see, tmg’s performance peaks at intermediate values of N . Finally,
although it is not clear from this figure, larger values of N can further increase
runtime because of disk accesses. The effects of this blocked approach to build-
ing the dictionary together with an incremental approach to constructing
the tdm, presented in Sect. 3.3, are the subject of our current investigations
toward better tuning of tmg’s performance. Overall, however, because tmg
does not currently implement text or index compression (see e.g., [40,444]) it
is better suited for datasets of moderate size.
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3.3 tmg for Document Renewal

The efficient updating or downdating tdms is of importance as it is key to
the maintenance of document collections. It can also lead to important CLA
issues related to the design of effective algorithms for fast svd updates; see for
example [310, 445, 456]. In order to retain independence from the underlying
VSM, we are concerned here with simple tdm updates that result in a matrix
that is identical with the one that would have been created were all docu-
ments available from the beginning and tmg applied to all. In other words,
we designed updating operations that maintain the integrity of the result-
ing tdm. To this end, tmg includes functions tdm update and tdm downdate
for modifying an existing tdm so as to take into account document arrival
and/or deletion. Any document arrival or deletion is likely to change the size
of the tdm as well as specific entries: nontrivial document arrival will cer-
tainly change the number of tdm columns and the number and labeling of
the rows, because terms satisfying the filtering requirements are encountered
or removed; and/or terms in the original dictionary that were excluded by
filtering become valid entries. Hence, in order to update correctly, the en-
tire dictionary of terms encountered during parsing (before filtering) must be
maintained together with the corresponding term frequencies. This informa-
tion is also sufficient for the proper update of the tdm when parameters such
as the maximum and/or minimum global frequencies change. Therefore, as
long as updates are anticipated, when tmg is run, the user must select to
save these items (tmg gui prompts the user accordingly). tmg saves them
in a MATLAB structure array, denoted by update struct. We avoid using
one full and one normalized (postfiltering) dictionary by working only with
the full dictionary and a vector of indices indicating those terms active in the
normalized dictionary, stored in the same structure array. For tdm downdate,
the user specifies the relevant update struct and a vector of integer indices
identifying the documents to remove. We evaluate the performance of renewal
in Sect. 4.2.
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Table 6. gtp and tmg runtimes (in seconds)

Toolbox-Collection reut-all medline cranfield cisi

tmg 169.52 8.27 10.05 14.28

gtp 96.84 4.52 8.2 4.96

4 Experimental Results

To check the results obtained from tmg, we first used it to build the tdms
from the medline, cranfield, and cisi collections and confirmed that they
were the same as those obtained using gtp, except for expected differences
due to the fact that the two packages follow contrasting approaches to han-
dle terms containing digits: tmg (resp. gtp) excludes (resp. includes) terms
that are solely composed of numeric characters but keeps (resp. drops) words
combining letters and numeric characters. We also show, in Table 6, the run-
times of tmg and gtp for the aforementioned datasets as well as for the set
reut-all, described in Sect. 3. Results with gtp were obtained on a sys-
tem running Linux with the gcc 2.95 compiler. In view of the fact that tmg
consists of MATLAB code, it is quite efficient, albeit slower than gtp. Fur-
thermore, as mentioned earlier, gtp’s lead is expected to increase for very large
datasets.

4.1 The BibBench Dataset

To illustrate the use of tmg we created a new dataset, called BibBench, con-
sisting of three source files from publicly accessible bibliographies4 in BibTEX
(the bibliography format for LATEX documents), with characteristics shown in
Table 7. The first, we call bkn, is a 651-entry bibliography contained in this
book, though loaded sometime before printing and therefore not correspond-
ing exactly to the final edition. The major theme is, of course, clustering . The
second bibliography, bec is from http://jilawww.colorado.edu/bec/bib/,
a repository of BibTEX references from topics in atomic and condensed matter
physics on the topic of Bose–Einstein condensation. When downloaded (Jan.
24, 2005) the bibliography contained 1,590 references. The last bibliography,
gvl, was downloaded from http://www.netlib.org/bibnet/subjects/ and
contains the full 861-item bibliography of the 2nd edition (1989) of a well-
known treatise on matrix computations [198]. The file was edited to remove
the first 350 lines of text that consisted of irrelevant header information. All
files were stored in a directory named BibBench. It is worth noting that at
first approximation, the articles in bec could be thought as belonging in one
cluster (“physics”), whereas those in bkn and gvl in another (“linear algebra
and information retrieval”).

4The bibliographies are directly accessible from the tmg web site.
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Table 7. BibBench dataset

Feature BEC BKN GVL BibBench txx s

Documents 1,590 651 860 3,101

Terms (indexing) 1712 1159 720 3,154

Stemmed terms 372 389 221 964

Avg. terms/document 41 38 28 37

Avg. terms/document (indexing) 13 13 8.40 12

tdm nonzeros (%) 0.74 1.00 1.15 0.36

We first used tmg to assemble the aforementioned bibliographies using
the terms weighting, no global weighting, no normalization, and stemming
(txx s) thus setting as nondefault OPTIONS

OPTIONS.delimiter=’@’; OPTIONS.line delimiter=0;
OPTIONS.stoplist=’bibcommon words’; OPTIONS.stemming=1;
OPTIONS.min global freq =2; OPTIONS.dsp= 0

Therefore, any word that appeared only once globally was eliminated (this had
the effect of eliminating one document from GVL). The remaining packet had
3,101 bibliographical entries across three plain ascii files: KNB.bib, BEC.bib,
and GVL.bib. The stoplist file was selected to consist of the same terms found
in [192] augmented by keywords utilized in BibTEX and referring to items
that are not useful for indexing, such as author, title, editor, year,
abstract, keywords, etc.

The execution of the following commands

[A, dictionary, global wts, norml factors, words per doc,...
titles, files, update struct]=tmg(’BibBench’,OPTIONS);

has the following effect (compacting for some pretty-printing):

==================================================================
Applying TMG for file/directory C:\TMG\BibBench...
==================================================================
Results:
==================================================================
Number of documents = 3101
Number of terms = 3154
Avg number terms per document (before normalization) = 36.9987
Avg number of indexing terms per document = 11.9074
Sparsity = 0.362853%
Removed 302 stopwords...
Removed 964 terms using the stemming algorithm...
Removed 2210 numbers...
Removed 288 terms using the term-length thresholds...
Removed 6196 terms using the global thresholds...
Removed 0 elements using the local thresholds...
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Removed 0 empty terms...
Removed 1 empty documents...

A simple combination of commands depicts the frequencies of the most fre-
quently occurring terms. After running tmg as above, the commands

f=sum(A,2); plot(f,’.’); [F,I]=sort(f);
t=20; dictionary(I(end:-1:end-t+1),:)

plot the frequencies of each term (Fig. 5) and return the top t = 20 terms of
highest frequency in the set, listed in decreasing order of occurrence below:

phy rev os condens instein lett atom trap comput algorithm
cluster method data ga usa system matrix linear matric mar

We next use tmg to modify the tdm so that it uses a different weighting
scheme specifically tnc and stemming. This can be done economically with
the update struct computed earlier as follows:

update struct.normalization=’c’; update struct.global weight=’n’;

A=tdm update([],update struct);

Using MATLAB’s spy command we visualize the sparsity structure of the
tdm A in Fig. 7 (left). In the sequel we apply two MATLAB functions pro-
duced in-house, namely pddp and block diagonalize. The former imple-
ments the pddp(l) algorithm for clustering of term-document matrices [452].
We used l = 1 and partitioned in two clusters only, so that results are identi-
cal with the original pddp algorithm [76]. In particular, classification of each
document into one of the two clusters is performed on the basis of the sign
of the corresponding element in the maximum right singular vector of matrix
A − Aee�/n, where e is the vector of all 1s. The MATLAB commands and
results are as follows:



Text to Matrix Generator 203

500 1000 1500 2000 2500 3000

0.06

0.04

0.02

0

0.02

0.04

0.06 cluster 2
cluster 1

BEC BKN GVL 

Fig. 6. Values of each of the 3,101 components of the maximum right singular vector
vmax of the BibBench dataset vs. their location in the set. The vertical lines that
separate the three BibTEXfiles and the labels were inserted manually

>> clusters = pddp(A,’svds’,’normal’,’1’,2);
Running PDDP(1) for k=2...
Using svds method for the SVD...
Splitting node #2 with 3101 documents and 55.558 scatter value

Leaf 3 with 1583 documents
Leaf 4 with 1518 documents

Number of empty clusters = 0
PDDP(1) terminated with 2 clusters

Figure 6 plots the maximum singular vector vmax corresponding to the
BibBench dataset. Even though our goal here is not to evaluate clustering
algorithms (there is plenty on this matter in other chapters of this volume!),
it is worth noting that pddp was quite good at revealing the two “natural
clusters”. Figure 6 shows that there are some documents from bec (marked
with ‘+’) that were classified in the “clustering and matrix computations”
cluster and very few documents from bkn and gvl that were classified in the
“physics” cluster.

Finally, function block diagonalize implements and plots the results
from a simple heuristic for row reordering of the term-document matrix based
on pddp. In particular, running

>> block diagonalize(A, clusters);
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Fig. 7. Spy view of BibBench tdm’s for k = 2 (left) and k = 4 (right) clusters

we obtain Fig. 7 (right). This illustrates the improvement made by the clus-
tering procedure. We note here that experiments of this nature, in the spirit of
work described in [66], are expected to be useful for instruction and research,
e.g., to visualize the effect of novel reordering schemes. Finally, Table 8, shows
the size and 10 top most frequent terms (after stemming) for each of the four
clusters obtained using pddp(1). There were two “physics” clusters, the theme
of another appears to be “linear algebra” while the theme of the last one is
“data mining”. The terms also reveal the need for better data cleaning [99],
e.g., by normalizing or eliminating journal names, restoring terms, etc.: for
instance, numermath, siamnum were generated because of nonstandard ab-
breviations of the journals Numerische Mathematik and SIAM Journal of
Numerical Analysis. Terms instein and os were generated because of entries
such as {E}instein and {B}os, where the brackets were used in the BibTEX
to avoid automatic conversion to lower case.

4.2 Performance Evaluation

Renewal Experiments

We next evaluate experimentally the performance of tmg when renewing ex-
isting tdms. We first ran tmg on the collection of 19,042 reut-all documents
and recorded the total runtime (169.52s) for tdm creation. We consider this
to be one-pass tdm creation. We then separated the documents in b = 2
groups formed by reut[1 : j] and reut[(j + 1) : 22], j = 1 : 21, an “original
group” of K documents and an “update group” with the remaining ones. We
consider this to be tdm creation in b = 2 passes. We then ran tmg twice,
first using tmg to create the tdm for the K documents and then tdm update.
We performed a similar experiment for downdating, removing in each step
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Table 8. Ten most frequent terms for each of the four clusters of BibBench using
pddp(1). In parentheses are the cluster sizes. We applied stemming but only minimal
data cleaning

I (1,033) II (553) III (633) IV (885)

phy phy matric cluster
rev instein numermath usa
os rev matrix data

condens condens eigenvalu comput
trap os siamnuman mine

instein lett symmetr algorithm
ga ketterl linalgapp york

atom atom problem analysi
lett optic linear parallel

interact mar solut siam

Table 9. Runtimes (s) for document renewal. To build the collection in one-pass
took 205.89 s

K tmg up Total down K tmg up Total down

925 6.00 271.70 277.70 0.11 10,963 88.88 82.52 171.39 0.34
2,761 18.00 224.05 242.05 0.13 11,893 97.92 70.55 168.47 0.38
3,687 24.75 203.24 227.99 0.16 12,529 104.64 63.63 168.27 0.44
4,584 31.83 185.09 216.92 0.19 13,185 110.67 56.14 166.81 0.39
5,508 39.70 167.25 206.95 0.17 14,109 119.92 46.77 166.69 0.45
6,429 47.19 151.63 198.81 0.20 15,056 128.92 37.58 166.50 0.48
7,319 54.69 137.28 191.97 0.22 15,996 139.86 27.16 167.02 0.52
8,236 63.22 121.78 185.00 0.25 16,903 149.66 19.23 168.89 0.56
9,140 71.47 108.53 180.00 0.31 17,805 159.58 11.66 171.24 0.61

10,051 80.39 93.91 174.30 0.31 18,582 166.61 6.78 173.39 0.66

the second part from the complete collection. Runtimes are summarized in
Table 9. We observe that renewal is quite efficient, and in some cases ap-
proaches the one-pass creation. In any case, it clearly proves that renewing is
much more efficient than recreating the tdm from scratch. Also, the gains from
downdating (vs. rebuilding) are even larger. These experiments also suggest
that for large datasets, even if the entire document collection is readily avail-
able and no further modifications are anticipated, it might be cost effective
to build the tdm in multiple (b ≥ 2) passes.

4.3 Evaluating Stemming and Term-Weighting

We next take advantage of the flexibility of tmg to evaluate the effect of dif-
ferent term weighting and normalization schemes and stemming in the context
of query answering and clustering with VSM and LSI.
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Query Answering

Our methodology is similar to that used by several other researchers in CLA
methods for IR, see, for example, [290]. We experimented with all possible
schemes available in tmg on standard data collections. In the case of LSI,
we used as computational kernel the sparse SVD algorithm implemented by
MATLAB’s svds function. We note that this is just one of several alter-
native approaches for the kernel SVD in LSI (cf. [62, 64, 232, 304]) and that
tmg facilitates setting up experiments seeking to evaluate their performance.
A common metric for the effectiveness of IR models is the N -point interpo-
lated average precision, defined by

p =
1
N

N∑
i=0

p̂(
i

N − 1
), (2)

where p̂(x) = max{pi | ni ≥ x r, i = 1 : r} is the “precision” at “recall”
level x, x ∈ [0, 1]. Precision and recall after i documents have been exam-
ined are pi = ni/i, and ri = ni/r, respectively, where, for a given query,
ni is the number of relevant documents up to the i-th document, and r is
the total number of relevant documents. We used this measure with N = 11
(a common choice in IR experiments) for three standard document collec-
tions: medline, cranfield, and cisi whose features, as reported by tmg,
are tabulated in Table 10. The stoplist file was the default obtained from
gtp. Parameter min global freq was set to 2, so terms appearing only once
were excluded, and stemming was enabled. As shown in Table 10, stemming
causes a significant – up to 36% – reduction in dictionary size.

For LSI, the matrix was approximated with the leading 100 singular
triplets. As described in Sect. 2.2, there are 60 possible combinations for the
term weighting and normalization in constructing the term document matrix
and 30 possible combinations in constructing the query vector. Taking into ac-
count the stemming option, there are 3,600 possible parameter combinations.

Table 10. Dataset statistics for “query answering” experiments

Feature medline cranfield cisi

Documents 1,033 1,398 1,460

Terms (indexing) 5,735 4,563 5,544

Terms/document 157 189 302

Terms/document (indexing) 71 92 60

tdm nonzeros (%) 0.86 1.27 0.84

# queries 30 225 35

Terms/query 22 19 16

Terms/query (indexing) 11 9 8

Terms (after stemming) 4,241 3,091 3,557

Dictionary size reduction (%) 26 32 36
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Table 11. VSM precision

medline cranfield cisi medline cranfield cisi

ngc.bp s 58.45 lgc.nf s 43.27 lpx.lg s 24.13 ngc.nf s 58.03 lxc.ne s 42.93 apx.ag s 23.69
lgc.bp s 58.41 lgc.be s 43.25 lgx.lp s 24.13 lfc.bg s 58.01 lxc.bf s 42.92 agx.ap s 23.69
ngc.bf s 58.36 lgc.ne s 43.23 lpx.tg s 23.96 ngc.ne s 58.00 lxc.nf s 42.87 apx.ng s 23.59
npc.bg s 58.35 lgc.bf s 43.20 lgx.tp s 23.96 lgc.be s 57.97 lgc.np s 42.87 agx.np s 23.59
ngc.be s 58.35 ngc.be s 43.16 lpx.ag s 23.93 npc.ng s 57.81 ngc.le s 42.82 npx.tg s 23.44
lgc.bf s 58.20 ngc.bf s 43.12 lgx.ap s 23.93 npx.bg s 57.81 lxc.lf s 42.82 ngx.tp s 23.44
lpc.bg s 58.17 lxc.be s 43.03 lpx.ng s 23.81 ngx.bp s 57.81 agc.nf s 42.81 ngx.tf s 23.41
nec.bg s 58.17 ngc.nf s 43.03 lgx.np s 23.81 agc.bp s 57.73 lgc.bp s 42.81 nfx.tg s 23.41
ngc.np s 58.15 ngc.ne s 42.98 apx.lg s 23.79 lec.bg s 57.70 ngc.lf s 42.81 npx.ag s 23.36
nfc.bg s 58.15 lgc.le s 42.96 agx.lp s 23.79 lgc.ne s 57.69 lgc.af s 42.79 ngx.ap s 23.36
lgc.np s 58.12 lxc.le s 42.96 apx.tg s 23.69 agc.bf s 57.67 lgc.tf s 42.79 ngx.lf s 23.36
lgc.nf s 58.08 lgc.lf s 42.95 agx.tp s 23.69 nec.ng s 57.67 agc.ne s 42.76 nfx.lg s 23.36

Table 12. LSI precision

medline cranfield cisi medline cranfield cisi

lfc.bp s 69.51 aec.bn s 46.23 aec.lp s 24.79 lec.np s 69.07 lpc.bf s 45.95 lfc.le s 24.24
lec.bp s 69.39 lec.bn s 46.18 aec.np s 24.66 lfc.nf s 69.06 lpc.be s 45.92 lfc.lp s 24.22
lec.bf s 69.38 lec.nn s 46.13 lfc.tf s 24.45 lpc.nf s 69.05 lfc.bp s 45.89 afc.tf s 24.22
lfc.bf s 69.33 aec.nn s 46.09 lfc.lf s 24.40 lpc.ne s 69.03 lec.bf s 45.87 lfc.tp s 24.19
lpc.bp s 69.31 lec.ln s 46.07 lfc.nf s 24.35 lec.nf s 69.00 lfc.be s 45.87 aec.bp s 24.19
lpc.be s 69.31 afc.bn s 46.06 lec.lf s 24.35 lpx.bp s 68.99 lfc.nf s 45.87 lec.bp s 24.17
lpc.bf s 69.27 aec.ln s 46.05 aec.le s 24.33 aec.bp s 68.99 aec.an s 45.82 lec.nf s 24.16
lfc.be s 69.27 lec.an s 46.04 lfc.af s 24.32 lfx.be s 68.93 lpc.ne s 45.82 afc.af s 24.16
lfc.np s 69.25 lec.tn s 46.04 lec.np s 24.32 lfc.ne s 68.92 aec.tn s 45.82 lfc.ne s 24.16
lpc.np s 69.16 lfc.bf s 46.02 lfc.te s 24.31 aec.bf s 68.92 afc.an s 45.79 aec.ne s 24.14
lec.be s 69.13 afc.nn s 45.99 aec.lf s 24.25 lpx.bf s 68.92 afc.tn s 45.79 afc.lf s 24.14
afc.bp s 69.09 afc.ln s 45.96 lfc.ae s 24.24 afc.bf s 68.91 lpc.nf s 45.79 lec.ne s 24.13

We ran all of them on the aforementioned data collections and recorded the
results. It must be noted that this is an exhaustive experiment of considerable
magnitude, taking approximately 10h of computation. Tables 11 and 12 list
the means of the 25 best precision values obtained amongst all weighting and
normalization schemes used for query answering using VSM and LSI. Symbols
“ s” and “ ns” indicate the presence or the absence of stemming. Tables 11
and 12 show the performance of LSI for the best weighting and normaliza-
tion options. First, note that LSI returns good precision, about 19% better
than VSM for medline. The performance of each weighting scheme does not
seem to vary across collections. For example, the “logarithmic” local term
and the “gfidf” global term weighting schemes appear to return the best pre-
cision values for VSM. In the case of LSI, it appears that “logarithmic” local
term weighting gives similar results, while “IDF” and “probabilistic inverse”
global term weighting return the best performance. Furthermore, precision is
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generally better with stemming. In view of this and the reduction in dictionary
size, stemming appears to be a desirable feature in both VSM and LSI.

Clustering

We next present results concerning the effects of term weighting and stemming
on clustering. For our experiments, we used parts of reut-all. We remind
the reader that the latter consists of 19,042 documents, 8,654 of which belong
to a single topic. We applied tmg in four parts of reut-all, labeled reutc1,
reutc2, reutc3, and reutc4. Each of these consist of documents from 22,
9, 6, and 25 classes, respectively. reutc1 up to reutc3 contain an equal
number of documents from each class (i.e., 40, 100, and 200, respectively).
reutc4, on the other hand, consists of documents with varying class sizes,
ranging from 30 to 300. Table 13 summarizes the features of our datasets.
As before, stemming causes again a significant – up to 31% – reduction in
dictionary size. As in Sect. 4.2, we tried all possible weighting and normaliza-
tion options available in tmg and recorded the resulting entropy values for
two clustering schemes: pddp [76], as a representative hierarchical algorithm,
based on spectral information, and Spherical k-means (Skmeans) [136] as
an interesting partitioning algorithm. Tables 14 and 15 summarize the en-
tropy values using the combinations of the ten weighting and normalization
schemes that returned the best results. Skmeans entropy values are about
45% better than pddp for reutc2. Stemming and cosine normalization ap-
pear to improve the quality of clustering in most cases. Tables 14, and 15 do
not identify a specific weighting scheme as best, though “logarithmic” and
“alternate log” local and “entropy” and “IDF” global weighting appear to
return good results. Moreover, the simple “term frequency” local function ap-
pears to return good clustering performance whereas global weighting does
not seem to improve matters.

5 Conclusions

We have outlined the design and implementation of tmg, a novel MATLAB
toolbox for the construction of tdms from text collections presented in the

Table 13. Document collections used in clustering experiments

Feature reut-all reutc1 reutc2 reutc3 reutc4

Documents 19,042 880 900 1,200 2,936

Terms (indexing) 21,698 4,522 4,734 5,279 8,846

Terms/document 145 179 180 175 180

Terms/document (indexing) 69 81 83 81 85

tdm nonzeros (%) 0.22 0.20 0.20 1.06 0.66

Terms (after stemming) 15,295 3,228 3,393 3,691 6,068

Dictionary size reduction (%) 30 29 28 30 31
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Table 14. Entropy values for pddp

reut1 reut2 reut3 reut4

tpc s 1.46 lec ns 1.11 aec s 0.85 afc ns 1.63

tec s 1.54 afc ns 1.13 lec s 0.90 tfc s 1.64

tfc s 1.58 aec ns 1.15 tec s 0.92 aec ns 1.67

tec ns 1.59 lec s 1.17 tec ns 0.93 afc s 1.68

lec s 1.61 lfc ns 1.18 bxc ns 0.96 lfc ns 1.68

aec s 1.61 lfc s 1.19 tfc s 0.96 tec ns 1.69

tpc ns 1.63 aec s 1.20 lec ns 0.97 tec s 1.69

aec ns 1.66 afc s 1.24 afc s 0.98 aec s 1.72

afc s 1.67 tfc ns 1.26 aec ns 1.01 tpc ns 1.72

afc ns 1.67 lgc ns 1.29 afc ns 1.01 lec s 1.73

Table 15. Entropy values for Skmeans

reut1 reut2 reut3 reut4

tpc s 1.18 axc s 0.61 bxc ns 0.66 lec s 0.96

tpc ns 1.23 aec s 0.73 lec ns 0.67 tfc s 0.98

tfc s 1.28 lec ns 0.73 lxc ns 0.73 tec s 0.99

tec s 1.30 lxc s 0.73 axc s 0.74 afc ns 1.03

afc s 1.31 tfc s 0.73 bxc s 0.74 aec s 1.03

tec ns 1.31 nxc s 0.74 bgc s 0.74 lec ns 1.04

lec ns 1.33 lxc ns 0.75 tec ns 0.75 afc s 1.04

axc s 1.35 axc ns 0.76 nxc ns 0.78 tec ns 1.06

afc ns 1.35 tec ns 0.76 bgc ns 0.78 apc s 1.06

ngc s 1.36 bgc s 0.76 tpc ns 0.79 tfc ns 1.07

form of ascii text files and directories. Our motivation was to facilitate users,
such as researchers and educators in computational linear algebra, who use
MATLAB to build algorithms for textual information retrieval and are in-
terested in the rapid preparation of test data. By using tmg one avoids the
extra steps necessary to convert or interface with data produced by other
systems. tmg returns (albeit slower) results comparable with those produced
by gtp, a popular C++ package for IR using LSI. tmg also allows one to
conduct stemming by means of a well-known variation of Porter’s algorithm
and provides facilities for the maintenance and incremental construction of
term-document collections. We presented examples of use of tmg in various
settings and data collections, including BibBench, a new dataset consisting
of data in BibTEX format. The flexibility of tmg allowed us extensive exper-
imentation with various combinations of term weighting and normalization
schemes and stemming. The tool is publicly available via a simple request.
We are currently working in enabling the tool to process a variety of other
document types as well as in distributed implementations. We intend to ex-
ploit the facilities for integer and single-precision arithmetic of MATLAB 7.0
as well as compression techniques to produce a more efficient implementation.
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Appendix

Availability

tmg and its documentation are available from the following URL:

http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/

Assuming that the file has been downloaded and saved into a directory that is
already in the MATLAB path or made to be that way by executing the MAT-
LAB command (addpath(’directory’)), tmg is ready for use. To process
Adobe pdf and PostScript files, the Ghostscript utility ps2ascii and
Ghostscript’s compiler must be made available in the path. tmg checks the
availability of this utility and uses it if available, otherwise processes the next
document. It is also recommended, before tmg, to use ps pdf2ascii, that is
our MATLAB interface to ps2ascii. This checks the resulting ascii file as
the results are not always desired. The user can also easily edit ps pdf2ascii
to insert additional filters so that the system can process additional file for-
mats (e.g., detex for TEX files). MATLAB version 6.5 or higher is assumed.



Criterion Functions for Clustering on
High-Dimensional Data

Y. Zhao and G. Karypis

Summary. In recent years, we have witnessed a tremendous growth in the vol-
ume of text documents available on the Internet, digital libraries, news sources, and
company-wide intranets. This has led to an increased interest in developing methods
that can help users to effectively navigate, summarize, and organize this information
with the ultimate goal of helping them to find what they are looking for. Fast and
high-quality document clustering algorithms play an important role toward this goal
as they have been shown to provide both an intuitive navigation/browsing mech-
anism by organizing large amounts of information into a small number of mean-
ingful clusters as well as to greatly improve the retrieval performance either via
cluster-driven dimensionality reduction, term-weighting, or query expansion. This
ever-increasing importance of document clustering and the expanded range of its
applications led to the development of a number of new and novel algorithms with
different complexity-quality trade-offs. Among them, a class of clustering algorithms
that have relatively low computational requirements are those that treat the clus-
tering problem as an optimization process, which seeks to maximize or minimize a
particular clustering criterion function defined over the entire clustering solution.

This chapter provides empirical and theoretical comparisons of the performance
of a number of widely used criterion functions in the context of partitional clustering
algorithms for high-dimensional datasets. The comparisons consist of a comprehen-
sive experimental evaluation involving 15 different datasets, as well as an analysis
of the characteristics of the various criterion func-break tions and their effect on the
clusters they produce. Our experimental results show that there is a set of criterion
functions that consistently outperform the rest, and that some of the newly proposed
criterion functions lead to the best overall results. Our theoretical analysis of the
criterion function shows that their relative performance of the criterion functions de-
pends on: (i) the degree to which they can correctly operate when the clusters are of
different tightness, and (ii) the degree to which they can lead to reasonably balanced
clusters.
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1 Introduction

The topic of clustering has been extensively studied in many scientific disci-
plines and a variety of different algorithms have been developed [61, 76, 105,
126,139,207,208,241,260,271,323,349,404,409,450]. Two recent surveys on the
topics [218, 245] offer a comprehensive summary of the different applications
and algorithms. These algorithms can be categorized along different dimen-
sions based either on the underlying methodology of the algorithm, leading
to agglomerative or partitional approaches, or on the structure of the final
solution, leading to hierarchical or nonhierarchical solutions.

In recent years, various researchers have recognized that partitional clus-
tering algorithms are well suited for clustering large document datasets due
to their relatively low computational requirements [121,303,407]. A key char-
acteristic of many partitional clustering algorithms is that they use a global
criterion function whose optimization drives the entire clustering process. For
some of these algorithms the criterion function is implicit (e.g., Principal
Direction Divisive Partitioning (PDDP) [76]), whereas for other algorithms
(e.g., k-means [323], Cobweb [164], and Autoclass [105]) the criterion func-
tion is explicit and can be easily stated. This latter class of algorithms can
be thought of as consisting two key components. The first is the criterion
function that the clustering solution optimizes, and the second is the actual
algorithm that achieves this optimization.

The focus of this chapter is to study the suitability of different criterion
functions to the problem of clustering document datasets. In particular, we
evaluate a total of seven criterion functions that measure various aspects of
intracluster similarity, intercluster dissimilarity, and their combinations. These
criterion functions utilize different views of the underlying collection by either
modeling the documents as vectors in a high-dimensional space or by modeling
the collection as a graph. We experimentally evaluated the performance of
these criterion functions using 15 different datasets obtained from various
sources. Our experiments show that different criterion functions do lead to
substantially different results and that there is a set of criterion functions
that produce the best clustering solutions.

Our analysis of the different criterion functions shows that their overall
performance depends on the degree to which they can correctly operate when
the dataset contains clusters of different tightness (i.e., they contain docu-
ments whose average pairwise similarities are different) and the degree to
which they can produce balanced clusters. Moreover, our analysis also shows
that the sensitivity to the difference in the cluster tightness can also explain
an outcome of our study (which was also observed in earlier results reported
in [407]), that for some clustering algorithms the solution obtained by perform-
ing a sequence of repeated bisections (RB) is better (and for some criterion
functions by a considerable amount) than the solution obtained by computing
the clustering directly. When the solution is computed via RB, the tightness
difference between the two clusters that are discovered is in general smaller
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than that between all the clusters. As a result, criterion functions that cannot
handle well variation in cluster tightness tend to perform substantially better
when used to compute the clustering via RB.

The rest of this chapter is organized as follows. Section 2 provides some
information on the document representation and similarity measure used in
our study. Section 3 describes the different criterion functions and the algo-
rithms used to optimize them. Section 4 provides the detailed experimental
evaluation of the various criterion functions. Section 5 analyzes the different
criterion functions and explains their performance. Finally, Sect. 6 provides
some concluding remarks.

2 Preliminaries

2.1 Document Representation

The various clustering algorithms described in this chapter represent each
document using the well-known term frequency–inverse document frequency
(tf–idf) vector-space model [377]. In this model, each document d is considered
to be a vector in the term-space and is represented by the vector

dtfidf = (tf1 log(n/df1), tf2 log(n/df2), . . . , tfm log(n/dfm)),

where tfi is the frequency of the ith term (i.e., term frequency), n is the total
number of documents, and dfi is the number of documents that contain the
ith term (i.e., document frequency). To account for documents of different
lengths, the length of each document vector is normalized so that it is of unit
length. In the rest of the chapter, we will assume that the vector representation
for each document has been weighted using tf–idf and normalized so that it
is of unit length.

2.2 Similarity Measures

Two important ways have been proposed to compute the similarity between
two documents di and dj . The first method is based on the commonly used
[377] cosine function

cos(di, dj) = di
tdj/(‖di‖‖dj‖),

and since the document vectors are of unit length, it simplifies to di
tdj . The

second method computes the similarity between the documents using the
Euclidean distance dis(di, dj) = ‖di − dj‖. Note that besides the fact that
one measures similarity and the other measures distance, these measures are
quite similar to each other because the document vectors are of unit length.
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2.3 Definitions

Throughout this chapter we use the symbols n, m, and k to denote the num-
ber of documents, the number of terms, and the number of clusters, respec-
tively. We use the symbol S to denote the set of n documents to be clustered,
S1, S2, . . . , Sk to denote each one of the k clusters, and n1, n2, . . . , nk to denote
their respective sizes. Given a set A of documents and their corresponding vec-
tor representations, we define the composite vector DA to be DA =

∑
d∈A d

and the centroid vector CA to be CA = DA/|A|.
The composite vector DA is nothing more than the sum of all documents

vectors in A, and the centroid CA is nothing more than the vector obtained
by averaging the weights of the various terms present in the documents of A.
Note that even though the document vectors are of length one, the centroid
vectors will not necessarily be of unit length.

2.4 Vector Properties

By using the cosine function as the measure of similarity between documents,
we can take advantage of a number of properties involving the composite and
centroid vectors of a set of documents. In particular, if Si and Sj are two sets
of unit-length documents containing ni and nj documents, respectively, and
Di, Dj and Ci, Cj are their corresponding composite and centroid vectors
then the following is true:

1. The sum of the pairwise similarities between the documents in Si and the
document in Sj is equal to Di

tDj . That is,∑
dq∈Di,dr∈Dj

cos(dq, dr) =
∑

dq∈Di,dr∈Dj

dq
tdr = Di

tDj . (1)

2. The sum of the pairwise similarities between the documents in Si is equal
to ‖Di‖2. That is,∑

dq,dr∈Di

cos(dq, dr) =
∑

dq,dr∈Di

dq
tdr = Di

tDi = ‖Di‖2
. (2)

Note that this equation includes the pairwise similarities involving the
same pairs of vectors.

3 Document Clustering

At a high level the problem of clustering is defined as follows. Given a set S of
n documents, we would like to partition them into a predetermined number
of k subsets S1, S2, . . . , Sk, such that the documents assigned to each subset
are more similar to each other than those assigned to different subsets.
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Table 1. Clustering criterion functions

I1 maximize

k∑
r=1

nr

⎛
⎝ 1

n2
r

∑
di,dj∈Sr

cos(di, dj)

⎞
⎠ =

k∑
r=1

‖Dr‖2

nr
(3)

I2 maximize

k∑
r=1

∑
di∈Sr

cos(di, Cr) =

k∑
r=1

‖Dr‖ (4)

E1 minimize

k∑
r=1

nr cos(Cr, C) ⇔ minimize

k∑
r=1

nr
Dr

tD

‖Dr‖ (5)

H1 maximize
I1

E1
⇔ minimize

∑k

r=1
‖Dr‖2/nr∑k

r=1
nrDr

tD/‖Dr‖
(6)

H2 maximize
I2

E1
⇔ minimize

∑k

r=1
‖Dr‖∑k

r=1
nrDr

tD/‖Dr‖
(7)

G1 minimize

k∑
r=1

cut(Sr, S − Sr)∑
di,dj∈Sr

cos(di, dj)
=

k∑
r=1

Dr
t(D − Dr)

‖Dr‖2
(8)

G2 minimize

k∑
r=1

cut(Vr, V − Vr)

W (Vr)
(9)

As discussed in the introduction, our focus is to study the suitability of
various clustering criterion functions in the context of partitional document
clustering algorithms. Consequently, given a particular clustering criterion
function C, the clustering problem is to compute a k-way clustering solution
such that the value of C is optimized. In the rest of this section, we first present
a number of different criterion functions that can be used to both evaluate
and drive the clustering process, followed by a description of the algorithms
that were used to perform their optimization.

3.1 Clustering Criterion Functions

Our study involves a total of seven different clustering criterion functions
that are summarized in Table 1. These functions optimize various aspects
of intracluster similarity, intercluster dissimilarity, and their combinations,
and represent some of the most widely used criterion functions for document
clustering.

Internal Criterion Functions

This class of clustering criterion functions focuses on producing a clustering
solution that optimizes a particular criterion function that is defined over the
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documents that are part of each cluster and does not take into account the
documents assigned to different clusters. Due to this intracluster view of the
clustering process, we refer to these criterion functions as internal.

The first internal criterion function that we study maximizes the sum
of the average pairwise similarities between the documents assigned to each
cluster weighted according to the size of each cluster, and has been used
successfully for clustering document datasets [363]. Specifically, if we use the
cosine function to measure the similarity between documents, then we wish
the clustering solution to optimize the following criterion function:

maximize I1 =
k∑

r=1

nr

⎛
⎝ 1

n2
r

∑
di,dj∈Sr

cos(di, dj)

⎞
⎠ . (10)

By using (2), the above formula can be rewritten as:

I1 =
k∑

r=1

‖Dr‖2

nr
.

Note that our definition of I1 includes the self-similarities between the docu-
ments of each cluster. The I1 criterion function is similar to that used in the
context of hierarchical agglomerative clustering that uses the group-average
heuristic to determine the pair of clusters to merge next.

The second criterion function that we study is used by the popular vector-
space variant of the K-means algorithm [121,136,303,407]. In this algorithm
each cluster is represented by its centroid vector and the goal is to find the
clustering solution that maximizes the similarity between each document and
the centroid of the cluster that is assigned to it. Specifically, if we use the
cosine function to measure the similarity between a document and a centroid,
then the criterion function becomes the following:

maximize I2 =
k∑

r=1

∑
di∈Sr

cos(di, Cr). (11)

This formula can be rewritten as follows:

I2 =
k∑

r=1

∑
di∈Sr

di
tCr

‖Cr‖ =
k∑

r=1

Dr
tCr

‖Cr‖ =
k∑

r=1

Dr
tDr

‖Dr‖ =
k∑

r=1

‖Dr‖.

Comparing the I2 criterion function with I1 we can see that the essential
difference between these criterion functions is that I2 scales the within-cluster
similarity by the ‖Dr‖ term as opposed to nr term used by I1. The term ‖Dr‖
is nothing more than the square root of the pairwise similarity between all
the documents in Sr, and will tend to emphasize the importance of clusters
(beyond the ‖Dr‖2 term) whose documents have smaller pairwise similarities
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compared to clusters with higher pairwise similarities. Also note that if the
similarity between a document and the centroid vector of its cluster is defined
as just the dot-product of these vectors, then we will get back the I1 criterion
function.

Finally, the last internal criterion function that we study is that used by
the traditional K-means algorithm. This criterion function uses the Euclidean
distance to determine the documents that should be clustered together, and
determines the overall quality of the clustering solution by using the sum-
of-squared-errors function. In particular, this criterion is defined as follows:

minimize I3 =
k∑

r=1

∑
di∈Sr

‖di − Cr‖2
. (12)

Note that by some simple algebraic manipulations [144], the above equation
can be rewritten as:

I3 =
k∑

r=1

1
nr

∑
di,dj∈Sr

‖di − dj‖2
, (13)

which is similar in nature to the I1 criterion function but instead of using
similarities it is expressed in terms of squared distances. Since the cosine and
Euclidean distance functions are similar to each other, I3 exhibits similar
characteristics with I1. To see this, from (13), using some basic trigonometric
manipulations we have that

‖di − dj‖2 = sin2(di, dj) + (1 − cos(di, dj))2 = 2(1 − cos(di, dj)).

Using this relation, (13) can be rewritten as:

I3 =
k∑

r=1

1
nr

∑
di,dj∈Sr

2(1 − cos(di, dj))

= 2

⎛
⎝ k∑

r=1

nr −
k∑

r=1

1
nr

∑
di,dj∈Sr

cos(di, dj)

⎞
⎠

= 2(n − I1).

Thus, minimizing I3 is the same as maximizing I1. Therefore, we will not
discuss I3 any further.

External Criterion Functions

Unlike internal criterion functions, external criterion functions derive the clus-
tering solution by focusing on optimizing a function that is based on how the
various clusters are different from each other. Due to this intercluster view of
the clustering process we refer to these criterion functions as external.
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It is quite hard to define external criterion functions that lead to meaning-
ful clustering solutions. For example, it may appear that an intuitive external
function may be derived by requiring that the centroid vectors of the different
clusters are as mutually orthogonal as possible, i.e., they contain documents
that share very few terms across the different clusters. However, for many
problems this criterion function has trivial solutions that can be achieved by
assigning to the first k − 1 clusters a single document that shares very few
terms with the rest, and then assigning the rest of the documents to the kth
cluster.

For this reason, the external function that we will study tries to separate
the documents of each cluster from the entire collection, as opposed trying
to separate the documents among the different clusters. In particular, our
external criterion function is defined as

minimize
k∑

r=1

nr cos(Cr, C), (14)

where C is the centroid vector of the entire collection. From this equation,
we can see that we try to minimize the cosine between the centroid vector
of each cluster to the centroid vector of the entire collection. By minimizing
the cosine we essentially try to increase the angle between them as much as
possible. Also note that the contribution of each cluster is weighted based
on the cluster size, so that larger clusters will weight heavier in the overall
clustering solution. This external criterion function was motivated by multiple
discriminant analysis and is similar to minimizing the trace of the between-
cluster scatter matrix [144].

(14) can be rewritten as

k∑
r=1

nr cos(Cr, C) =
k∑

r=1

nr
Cr

tC

‖Cr‖‖C‖ =
k∑

r=1

nr
Dr

tD

‖Dr‖‖D‖

=
1

‖D‖

(
k∑

r=1

nr
Dr

tD

‖Dr‖

)
,

where D is the composite vector of the entire document collection. Note that
since 1/‖D‖ is constant irrespective of the clustering solution the criterion
function can be restated as:

minimize E1 =
k∑

r=1

nr
Dr

tD

‖Dr‖ . (15)

As we can see from (15), even though our initial motivation was to define an
external criterion function, because we used the cosine function to measure
the separation between the cluster and the entire collection, the criterion
function does take into account the within-cluster similarity of the documents
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(due to the ‖Dr‖ term). Thus, E1 is actually a hybrid criterion function that
combines both external as well as internal characteristics of the clusters.

Another external criterion function can be defined with respect to the
Euclidean distance function and the squared errors of the centroid vectors as
follows:

maximize E2 =
k∑

r=1

nr‖Cr − C‖2
. (16)

However, it can be shown that maximizing E∈ is identical to minimizing I3

[144], and we will not consider it any further.

Hybrid Criterion Functions

The various criterion functions we described so far focus only on optimizing
a single criterion function that is either defined in terms of how documents
assigned to each cluster are related together, or how the documents assigned
to each cluster are related with the entire collection. In the first case, they
try to maximize various measures of similarity over the documents in each
cluster, and in the second case, they try to minimize the similarity between
the cluster’s documents and the collection. However, the various clustering
criterion functions can be combined to define a set of hybrid criterion functions
that simultaneously optimize multiple individual criterion functions.

In our study, we focus on two hybrid criterion function that are obtained
by combining criterion I1 with E1 , and I2 with E1 , respectively. Formally,
the first criterion function is

maximize H1 =
I1

E1
=

∑k
r=1 ‖Dr‖2

/nr∑k
r=1 nrDr

tD/ nrmDr

, (17)

and the second is

maximize H2 =
I2

E1
=

∑k
r=1 ‖Dr‖∑k

r=1 nrDr
tD/‖Dr‖

. (18)

Note that since E1 is minimized, both H1 and H2 need to be maximized as
they are inversely related to E1.

Graph-Based Criterion Functions

The various criterion functions that we described so far, view each document
as a multidimensional vector. An alternate way of viewing the relations be-
tween the documents is to use graphs. In particular, two types of graphs
have been proposed for modeling the document in the context of clustering.
The first graph is nothing more than the graph obtained by computing the
pairwise similarities between the documents, and the second graph is obtained
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by viewing the documents and the terms as a bipartite graph [52, 128, 455].
By viewing the documents in this fashion, a number of edge-cut-based cri-
terion functions (i.e., graph-based criterion functions) can be used to cluster
document datasets [109,128,139,212,395,455]. G1 and G2 ((19) and (20)) are
two such criterion functions that are defined on the similarity and bipartite
graphs, respectively.

Given a collection of n documents S, the similarity graph Gs is obtained
by modeling each document as a vertex, and having an edge between each pair
of vertices whose weight is equal to the similarity between the corresponding
documents. By viewing the documents in this fashion, a number of internal,
external, or combined criterion functions can be defined that measure the
overall clustering quality. In our study we investigate one such criterion func-
tion called MinMaxCut, that was proposed recently [139]. MinMaxCut falls
under the category of criterion functions that combine both the internal and
me external views of the clustering process and is defined as [139]

minimize
k∑

r=1

cut(Sr, S − Sr)∑
di,dj∈Sr

sim(di, dj)
,

where cut(Sr, S −Sr) is the edge cut between the vertices in Sr to the rest of
the vertices in the graph S − Sr. The edge cut between two sets of vertices A
and B is defined to be the sum of the edges connecting vertices in A to vertices
in B. The motivation behind this criterion function is that the clustering
process can be viewed as that of partitioning the documents into groups by
minimizing the edge cut of each partition. However, for reasons similar to those
discussed in Sect. 3.1, such an external criterion may have trivial solutions,
and for this reason each edge cut is scaled by the sum of the internal edges.
As shown in [139], this scaling leads to better balanced clustering solutions. If
we use the cosine function to measure the similarity between the documents,
and (1) and (2), then the above criterion function can be rewritten as

k∑
r=1

∑
di∈Sr,dj∈S−Sr

cos(di, dj)∑
di,dj∈Sr

cos(di, dj)
=

k∑
r=1

Dr
t(D − Dr)
‖Dr‖2 =

(
k∑

r=1

Dr
tD

‖Dr‖2

)
− k,

and since k is constant, the criterion function can be simplified to

minimize G1 =
k∑

r=1

Dr
tD

‖Dr‖2 . (19)

An alternate graph model views the various documents and their terms
as a bipartite graph Gb = (V,E), where V consists of two sets Vd and Vt.
The vertex set Vd corresponds to the documents whereas the vertex set Vt

corresponds to the terms. In this model, if the ith document contains the
jth term, there is an edge connecting the corresponding ith vertex of Vd

to the jth vertex of Vt. The weights of these edges are set using the tf–idf
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model discussed in Sect. 2. Given such a bipartite graph, the problem of
clustering can be viewed as that of computing a simultaneous partitioning
of the documents and the terms so that a criterion function defined on the
edge cut is optimized. In our study, we focus on a particular edge cut-based
criterion function called the normalized cut, which had been recently used in
the context of this bipartite graph model for document clustering [128, 455].
The normalized cut criterion function is defined as

minimize G2 =
k∑

r=1

cut(Vr, V − Vr)
W (Vr)

, (20)

where Vr is the set of vertices assigned to the rth cluster, and W (Vr) is the
sum of the weights of the adjacency lists of the vertices assigned to the rth
cluster. Note that the rth cluster will contain vertices from both the Vd and
Vt, i.e., both documents as well as terms. The key motivation behind this
representation and criterion function is to compute a clustering that groups
together documents as well as the terms associated with these documents.
Also, note that the various W (Vr) quantities are used primarily as normal-
ization factors, to ensure that the optimization of the criterion function does
not lead to trivial solutions. Its purpose is similar to the ‖Dr‖2 factor used in
G1 (19).

3.2 Criterion Function Optimization

There are many techniques that can be used to optimize the criterion func-
tions described in Sect. 3.1 They include relatively simple greedy schemes, it-
erative schemes with varying degree of hill-climbing capabilities, and powerful
but computationally expensive spectral-based optimizers [76,105,128,165,261,
323,333,454,455]. Despite this wide range of choices, in our study, the various
criterion functions were optimized using a simple and obvious greedy strategy.
This was primarily motivated by our experience with document datasets (and
similar results presented in [385]), which showed that greedy-based schemes
(when run multiple times) produce comparable results to those produced by
more sophisticated optimization algorithms for the range of the number of
clusters that we used in our experiments. Nevertheless, the choice of the op-
timization methodology can potentially impact the relative performance of
the various criterion functions, since that performance may depend on the
optimizer [165]. However, as we will see later in Sect. 5, our analysis of the cri-
terion functions correlates well with our experimental results, suggesting that
the choice of the optimizer does not appear to be biasing the experimental
comparisons.

Our greedy optimizer computes the clustering solution by first obtaining an
initial k-way clustering and then applying an iterative refinement algorithm
to further improve it. During initial clustering, k documents are randomly
selected to form the seeds of the clusters and each document is assigned to the
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cluster corresponding to its most similar seed. This approach leads to an initial
clustering solution for all but the G2 criterion function as it does not produce
an initial partitioning for the vertices corresponding to the terms (Vt). The
initial partitioning of Vt is obtained by assigning each term v to the partition
that is most connected with. The iterative refinement strategy that we used is
based on the incremental refinement scheme described in [144]. During each
iteration, the documents are visited in a random order and each document
is moved to the cluster that leads to the highest improvement in the value
of the criterion function. If no such cluster exists, then the document does
not move. The refinement phase ends, as soon as an iteration is performed in
which no documents were moved between clusters. Note that in the case of
G2, the refinement algorithm alternates between document-vertices and term-
vertices [288].

The algorithms used during the refinement phase are greedy in nature,
they are not guaranteed to converge to a global optimum, and the local op-
timum solution they obtain depends on the particular set of seed documents
that were selected to obtain the initial clustering. To eliminate some of this
sensitivity, the overall process is repeated a number of times. That is, we com-
pute N different clustering solutions (i.e., initial clustering followed by cluster
refinement), and the one that achieves the best value for the particular crite-
rion function is kept. In all our experiments, we used N = 10. For the rest of
this discussion when we refer to a clustering solution, we will mean the solu-
tion that was obtained by selecting the best (with respect to the value of the
respective criterion function) out of these N potentially different solutions.

4 Experimental Results

We experimentally evaluated the performance of the different clustering crite-
rion functions on a number of different datasets. In the rest of this section we
first describe the various datasets and our experimental methodology, followed
by a description of the experimental results.

4.1 Document Collections

In our experiments, we used a total of 15 datasets [1] whose general character-
istics and sources are summarized in Table 2. The smallest of these datasets
contained 878 documents and the largest contained 11,162 documents. To en-
sure diversity in the datasets, we obtained them from different sources. For
all datasets we used a stop list to remove common words and the words were
stemmed using Porter’s suffix-stripping algorithm [362]. Moreover, any term
that occurs in fewer than two documents was eliminated.

4.2 Experimental Methodology and Metrics

For each one of the different datasets we obtained a 5-way, 10-way, 15-way,
and 20-way clustering solution that optimized the various clustering criterion
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Table 2. Summary of datasets used to evaluate the various clustering criterion
functions

Data Source # of # of # of
documents terms classes

classic CACM/CISI/CRANFIELD/MEDLINE [2] 7,089 12,009 4
fbis FBIS (TREC-5 [423]) 2,463 12,674 17
hitech San Jose Mercury (TREC, TIPSTER Vol. 3) 2,301 13,170 6
reviews San Jose Mercury (TREC, TIPSTER Vol. 3) 4,069 23,220 5
sports San Jose Mercury (TREC, TIPSTER Vol. 3) 8,580 18,324 7
la12 LA Times (TREC-5 [423]) 6,279 21,604 6
new3 TREC-5 & TREC-6 [423] 9,558 36,306 44
tr31 TREC-5 & TREC-6 [423] 927 10,128 7
tr41 TREC-5 & TREC-6 [423] 878 7,454 10
ohscal OHSUMED-233445 [228] 11,162 11,465 10
re0 Reuters-21578 [313] 1,504 2,886 13
re1 Reuters-21578 [313] 1,657 3,758 25
k1a WebACE [216] 2,340 13,879 20
k1b WebACE [216] 2,340 13,879 6
wap WebACE [216] 1,560 8,460 20

functions shown in Table 1. The quality of a clustering solution was evaluated
using the entropy measure, which is based on how the various classes of
documents are distributed within each cluster. Given a particular cluster Sr

of size nr, the entropy of this cluster is defined to be

E(Sr) = − 1

log q

q∑
i=1

ni
r

nr
log

ni
r

nr
,

where q is the number of classes in the dataset and ni
r is the number of

documents of the ith class that were assigned to the rth cluster. The entropy
of the entire solution is defined to be the sum of the individual cluster entropies
weighted according to the cluster size, i.e.,

Entropy =

k∑
r=1

nr

n
E(Sr).

A perfect clustering solution will be the one that leads to clusters that contain
documents from only a single class, in which case the entropy will be 0. In
general, the smaller the entropy values, the better the clustering solution is.

To eliminate any instances where a particular clustering solution for a
particular criterion function gets trapped into a bad local optimum, in all
our experiments we found ten different clustering solutions. As discussed in
Sect. 3.2 each of these ten clustering solutions correspond to the best solu-
tion (in terms of the respective criterion function) out of ten different initial
partitioning and refinement phases. As a result, for each particular value of
k and criterion function we generated 100 different clustering solutions. The
overall number of experiments that we performed was 3 × 100 × 4 × 8 × 15
= 144,000, which were completed in about 8 days on a Pentium III@600MHz
workstation.

One of the problems associated with such large-scale experimental evalua-
tion is that of summarizing the results in a meaningful and unbiased fashion.
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Our summarization is done as follows. For each dataset and value of k, we
divided the entropy obtained by a particular criterion function by the smallest
entropy obtained for that particular dataset and value of k over the different
criterion functions. These ratios represent the degree to which a particular
criterion function performed worse than the best criterion function for that
dataset and value of k. These ratios are less sensitive to the actual entropy
values and the particular value of k. We refer to these ratios as relative en-
tropies. Now, for each criterion function and value of k we averaged these
relative entropies over the various datasets. A criterion function that has an
average relative entropy close to 1.0 indicates that this function did the best
for most of the datasets. On the other hand, if the average relative entropy
is high, then this criterion function performed poorly. In addition to these
numerical averages, we evaluated the statistical significance of the relative
performance of the criterion functions using a paired-t test [127] based on
the original entropies for each dataset. The original entropy values for all the
experiments presented in this chapter can be found in [462].

4.3 Evaluation of Direct k-Way Clustering

Our first set of experiments was focused on evaluating the quality of the
clustering solutions produced by the various criterion functions when they
were used to compute a k-way clustering solution directly. The values for the
average relative entropies for the 5-way, 10-way, 15-way, and 20-way clustering
solutions are shown in Table 3. The row labeled “Avg” contains the average
of these averages over the four sets of solutions. Furthermore, the last column
shows the relative ordering of the different schemes using the paired-t test.

From these results we can see that the I1 and the G2 criterion functions
lead to clustering solutions that are consistently worse (in the range of 19–
35%) than the solutions obtained using the other criterion functions. On the
other hand, the I2, H2, and H1 criterion functions lead to the best solutions
irrespective of the number of clusters. Over the entire set of experiments,
these methods are either the best or always within 2% of the best solution.

Table 3. Average relative entropies for the clustering solutions obtained via direct k-
way clustering and their statistical significance. Underlined entries represent the best
performing scheme in terms of average relative entropies. Note that “�” indicates
that schemes on the right are significantly better than the schemes on the left, and
“( )” indicates that the relationship is not significant. The order of the schemes
within parentheses represent the order of the weak relationship

k I1 I2 E1 H1 H2 G1 G2 Statistical significance test, p-value=0.05
5 1.361 1.041 1.044 1.069 1.033 1.092 1.333 (I1,G2) 
 (G1,H1) 
 (E1, I2,H2)
10 1.312 1.042 1.069 1.035 1.040 1.148 1.380 G2 
 I1 
 G1 
 (E1,H2,H1, I2)
15 1.252 1.019 1.071 1.029 1.029 1.132 1.402 G2 
 I1 
 G1 
 E1 
 (H2,H1, I2)
20 1.236 1.018 1.086 1.022 1.035 1.139 1.486 G2 
 I1 
 G1 
 E1 
 H2 
 (I2,H1)
Avg 1.290 1.030 1.068 1.039 1.034 1.128 1.400
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Finally, E1 performs the next best followed by G1 that produces solutions
whose average relative entropy is 9% worse than those produced by the best
scheme.

4.4 Evaluation of k-Way Clustering via Repeated Bisections

Our second set of experiments was focused on evaluating the clustering so-
lutions produced by the various criterion functions when the overall solution
was obtained via a sequence of cluster bisections (RB). In this approach, a
k-way solution is obtained by first bisecting the entire collection. Then, one
of the two clusters is selected and it is further bisected, leading to a total of
three clusters. This step of selecting and bisecting a cluster is performed k−1
times leading to the desired k-way clustering solution. Each of these bisections
is performed so that the resulting bisection optimizes a particular criterion
function. However, the overall k-way clustering solution will not necessarily
be at a local optimum with respect to that criterion function.

The key step in this algorithm is the method used to select the cluster to
bisect next and a number of different approaches are described in [259, 386,
407]. In all our experiments, we selected the largest cluster, as this approach
leads to reasonably good and balanced clustering solutions [407].

The average relative entropies of the resulting solutions are shown in
Table 4, and these results are in general consistent with those obtained for
direct k-way clustering Table 3. The I1 and G2 functions lead to the worst
solutions, H2 leads to the best overall solutions, and I2, E1, and G1 are within
2% of the best. However, in the case of RB, there is a reduction in the relative
difference between the best and the worst schemes. For example, G2 is only
13% worse than the best (compared to 35% for direct k-way). Similar trends
can be observed for the other functions. This relative improvement becomes
most apparent for the G1 criterion function that now almost always performs
within 2% of the best. The reason for these improvements is discussed in
Sect. 5.

Figure 1 compares the quality of the solutions obtained via direct k-way to
those obtained via RB. These plots were obtained by dividing the entropies
of the solutions obtained by the direct k-way approach with those obtained
by the RB approach and averaging them over the 15 datasets. Ratios that are
greater than 1 indicate that the RB approach leads to better solutions than

Table 4. Average relative entropies for the clustering solutions obtained via re-
peated bisections and their statistical significance

k I1 I2 E1 H1 H2 G1 G2 Statistical significance test, p-value=0.05
5 1.207 1.050 1.060 1.083 1.049 1.053 1.191 (I1,G2) 
 (H1, E1,G1, I2,H2)
10 1.243 1.112 1.083 1.129 1.056 1.106 1.221 (I1,G2) 
 (H1, I2,G1, E1,H2)
15 1.190 1.085 1.077 1.102 1.079 1.085 1.205 (G2, I1) 
 (H1,G1, E1, I2,H2)
20 1.183 1.070 1.057 1.085 1.072 1.075 1.209 (G2, I1) 
 (H1,G1, E1, I2,H2)
Avg 1.206 1.079 1.069 1.100 1.064 1.080 1.207
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Fig. 1. The relative performance of direct k-way clustering over that of repeated
bisections (left). The relative performance of repeated bisections-based clustering
followed by k-way refinement over that of repeated bisections alone (right). These
results correspond to averages over the different datasets

direct k-way and vice versa. From these plots we see that the direct k-way
solutions obtained by I1, G1, and G2 are worse than those obtained by RB
clustering. For the remaining functions, the relative performance appears to be
sensitive to the number of clusters. For a small number of clusters, the direct
approach tends to lead to better solutions; however, as the number of clusters
increases the RB approach tends to outperform it. In fact, the sensitivity on
k appears to be true for all seven criterion functions, and the main difference
has to do with how quickly the relative quality of the direct k-way clustering
solution degrades. Among the different functions, I2, H1, and H2 appear to be
the least sensitive as their relative performance does not change significantly
between the two clustering methods as k increases.

4.5 Evaluation of k-Way Clustering via Repeated Bisections
Followed by k-Way Refinement

To further investigate the behavior of the RB-based clustering approach we
performed a sequence of experiments in which the final solution obtained by
the RB approach for a particular criterion function was further refined using
the greedy k-way refinement algorithm described in Sect. 3.2. We refer to this
scheme as RB-k-way. The average relative entropies for this set of experiments
are shown in Table 5.

Comparing the relative performance of the various criterion functions we
can see that they are more similar to those of direct k-way (Table 3) than those
of the RB-based approach (Table 4). In particular, I2, E1, H1, and H2 tend to
outperform the rest, with I2 performing the best. Also, we can see that I1, G1,
and G2 are considerably worse than the best scheme. Figure 1 compares the
relative quality of the RB-k-way solutions to the solutions obtained by the RB-
based scheme. Looking at these results we can see that by optimizing the I1,
E1, G1, and G2 criterion functions, the quality of the solutions become worse,
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Table 5. Average relative entropies for the clustering solutions obtained via re-
peated bisections followed by k-way refinement and their statistical significance

k I1 I2 E1 H1 H2 G1 G2 Statistical significance test, p-value=0.05
5 1.304 1.081 1.077 1.121 1.076 1.097 1.273 (I1,G2) 
 (H1,G1, E1, I2,H2)
10 1.278 1.065 1.088 1.063 1.051 1.127 1.255 (G2, I1) 
 G1 
 (E1,H1, I2,H2)
15 1.234 1.037 1.089 1.057 1.046 1.140 1.334 G2 
 I1 
 (G1, E1) 
 (H1,H2, I2)
20 1.248 1.030 1.098 1.041 1.051 1.164 1.426 G2 
 I1 
 G1 
 E1 
 (H2,H1, I2)
Avg 1.266 1.053 1.088 1.070 1.056 1.132 1.322

especially for a large number of clusters. The largest degradation happens for
G1 and G2. On the other hand, as we optimize either I2, H1, or H2, the over-
all cluster quality changes only slightly (sometimes it gets better and some-
times it gets worse). These results verify the observations we made in Sect. 4.4
that suggest that the optimization of some of the criterion functions does not
necessarily lead to better quality clusters, especially for large values of k.

5 Discussion and Analysis

The experiments presented in Sect. 4 showed two interesting trends. First, the
quality of the solutions produced by some seemingly similar criterion functions
is often substantially different. For instance, both I1 and I2 find clusters by
maximizing a particular within cluster similarity function. However, I2 per-
forms substantially better than I1. This is also true for E1 and G1 that attempt
to minimize a function that takes into account both the within cluster similar-
ity and the across cluster dissimilarity. However, in most of the experiments,
E1 tends to perform consistently better than G1. The second trend is that
for many criterion functions, the quality of the solutions produced via RB is
better than the corresponding solutions produced either via direct k-way clus-
tering or after performing k-way refinement. Furthermore, this performance
gap seems to increase with the number of clusters k. In the remainder of this
section we present an analysis that explains the cause of these trends. Our
analyses are specific to selected criterion functions, and thus may have limited
direct transfer in cases where other criteria are used. However, we believe that
such analyses of criteria biases are important generally to better understand
empirical findings. This is particularly important in clustering studies, an area
in which a plethora of criteria exist, some appearing quite similar in form, but
with very different implications for clustering results.

5.1 Analysis of the I1 and I2 Criterion Functions

As a starting point for analyzing the I1 and I2 criterion functions, it is im-
portant to qualitatively understand the solutions that they produce. Figure 2
shows the 10-way clustering solutions obtained for the sports dataset using the
direct clustering approach for I1 and I2. The rows of each subtable represent
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1 475 0.087 97 35 143 8 112 64 16
2 384 0.129 1 1 381 1
3 1508 0.032 310 58 1055 11 5 59 10
4 844 0.094 1 1 841 1
5 400 0.163 1 399
6 835 0.097 829 6
7 1492 0.067 1489 1 2
8 756 0.099 2 752 1 1
9 621 0.108 618 1 2
10 1265 0.036 65 560 296 9 5 22 308

1 1035 0.098 1034 1
2 594 0.125 1 592 1
3 322 0.191 321 1
4 653 0.127 1 652
5 413 0.163 413
6 1041 0.058 1041
7 465 0.166 464 1
8 296 0.172 296
9 3634 0.020 1393 789 694 157 121 145 335
10 127 0.268 108 1 17 1

1 Criterion Function (Entropy=0.357) 2 Criterion Function (Entropy=0.240)
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Fig. 2. The cluster-class distribution of the clustering solutions for the I1 and I2

criterion functions for the sports dataset

a particular cluster and show the class distribution of the documents assigned
to it. The columns labeled “Size” show the number of documents assigned
to each cluster and those labeled “Sim” show the average pairwise similarity
between the documents of each cluster. From these results we can see that
both I1 and I2 produce solutions that contain a mixture of large, loose clus-
ters and small, tight clusters. However, I1 behaves differently from I2 in two
ways: (i) I1’s solution has a cluster (cid = 9), which contains a very large
number of documents from different categories and very low average pairwise
similarities, whereas I2’s solution does not. This is also the reason why I1’s
solution has a higher overall entropy value compared to I2’s (0.357 vs. 0.240).
(ii) Excluding this large poor cluster, I1’s remaining clusters tend to be quite
pure and relatively tight (i.e., high “Sim” values), whereas I2’s clusters are
somewhat less pure and less tight. The above observations on the character-
istics of the solutions produced by I1 and I2 and the reasons as to why the
former leads to higher entropy solutions hold for the remaining datasets as
well.

To analyze this behavior we focus on the properties of an optimal clus-
tering solution with respect to either I1 or I2 and show how the tightness of
each cluster affects the assignment of documents between the clusters. The
following two propositions, whose proofs are in Appendix 6, state the prop-
erties that are satisfied by the optimal solutions produced by the I1 and I2

criterion functions:

Proposition 1. Given an optimal k-way solution {S1, S2, . . . , Sk} with re-
spect to I1, then for each pair of clusters Si and Sj, each document d ∈ Si

satisfies the following inequality:

δi − δj ≥ µi − µj

2
, (21)

where µi is the average pairwise similarity between the document of Si exclud-
ing d, δi is the average pairwise similarity between d and the other documents
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of Si, µj is the average pairwise similarity between the document of Sj, and
δj is the average pairwise similarity between d and the documents of Sj.

Proposition 2. Given an optimal k-way solution {S1, S2, . . . , Sk} with re-
spect to I2, then for each pair of clusters Si and Sj, each document d ∈ Si

satisfies the following inequality:

δi

δj
≥
√

µi

µj
, (22)

where µi, µj, δi, and δj is as defined in Proposition 1.

From (21) and (22), we have that if the optimal solution contains clusters
with substantially different tightness, then both criterion functions lead to
optimal solutions in which documents that are more similar to a tighter cluster
are assigned to a looser cluster. That is, without loss of generality, if µi > µj ,
then a document for which δi is small will be assigned to Sj , even if δj < δi.
However, what differentiates the two criterion functions is how small δj can
be relative to δi before such an assignment can take place. In the case of I1,
even if δj = 0 (i.e., document d has nothing in common with the documents
of Sj), d can still be assigned to Sj as long as δi < (µi − µj)/2, i.e., d has
a relatively low average similarity with the documents of Si. On the other
hand, I2 will only assign d to Sj if it has a nontrivial average similarity to the
documents of Sj (δj > δi

√
µj/µi). In addition, when δi and δj are relatively

small, that is

δj < µj
α − 1

2(
√

α − 1)
and δi < µi

√
α(α − 1)

2(
√

α − 1)
, where α =

µi

µj
,

for the same value of δj , I1 assigns documents to Sj that have higher δi

values than I2 does. Of course whether or not such document assignments
will happen, depends on the characteristics of the particular dataset, but as
long as the dataset has such characteristics, regardless of how I1 or I2 are
optimized, they will tend to converge to this type of solution.

These observations explain the results shown in Fig. 2, in which I1’s clus-
tering solution contains nine fairly pure and tight clusters, and a single large
and poor-quality cluster. That single cluster acts almost like a garbage collec-
tor, which attracts all the peripheral documents of the other clusters.

To graphically illustrate this, Fig. 3 shows the range of δi and δj values
for which the movement of a particular document d from the ith to the jth
cluster leads to an improvement in either the I1 or I2 criterion function. The
plots in Fig. 3a were obtained using µi = 0.10, µj = 0.05, whereas the plot in
Fig. 3b were obtained using µi = 0.20 and µj = 0.05. For both sets of plots
ni = nj = 400 was used. The x-axis of the plots in Fig. 3 corresponds to
δj , whereas the y-axis corresponds to δi. For both cases, we let these average
similarities take values between 0 and 1. The various regions in the plots of
Fig. 3 are labeled based on whether or not any of the criterion functions will
move d to the other cluster, based on the particular set of δi and δj values.

Looking at these plots we can see that there is a region of small δi and δj

values for which I1 will perform the move where I2 will not. These conditions
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1 & 2 move conditions for m i = 0.20 & m j = 0.051 & 2 move conditions for m i = 0.10 & m j = 0.05

Fig. 3. The range of values of δi and δj for which a particular document d will
move from the ith to the jth cluster. The first plot (a) shows the ranges when the
average similarities of the documents in the ith and jth cluster are 0.10 and 0.05,
respectively. The second plot (b) shows the ranges when the respective similarities
are 0.20 and 0.05. For both cases each of the clusters was assumed to have 400
documents

are the ones that we already discussed and are the main reason why I1 tends
to create a large poor-quality cluster and I2 does not. There is also a region
for which I2 will perform the move but I1 will not. This is the region for which
δi > δj + (µi − µj)/2 but δj/

√
µj > δi/

√
µi. That is the average similarity

between document d and cluster Sj relative to the square root of the internal
similarity of Sj is greater than the corresponding quantity of Si. Moreover, as
the plots illustrate, the size of this region increases as the difference between
the tightness of the two clusters increases.

The justification for this type of moves is that d behaves more like the
documents in Sj (as measured by √

µj) than these in Si. To that extent, I2

exhibits some dynamic modeling characteristics [260], in the sense that its
move is based both on how close it is to a particular cluster as well as on the
properties of the cluster itself. However, even though the principle of dynamic
modeling has been shown to be useful for clustering, it may sometimes lead
to errors as primary evidence of cluster membership (i.e., the actual δi and
δj values) are second guessed. This may be one of the reasons why the I2

criterion function leads to clusters that in general are more noisy than the
corresponding clusters of I1, as the example in Fig. 2 illustrates.

5.2 Analysis of the E1 and G1 Criterion Functions

Both E1 and G1 functions measure the quality of the overall clustering solu-
tion by taking into account the separation between clusters and the tightness
of each cluster. However, as the experiments presented in Sect. 4 show E1
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1 1330 0.076 1327 2 1
2 975 0.080 3 5 966 1
3 742 0.072 15 703 24
4 922 0.079 84 8 32 797 1
5 768 0.078 760 1 6 1
6 897 0.054 6 2 889
7 861 0.091 845 0 15 1
8 565 0.079 24 525 13 1 2
9 878 0.034 93 128 114 4 97 121 321
10 642 0.068 255 36 286 7 24 24 10

1 Criterion Function (Entropy=0.203)

1 519 0.146 516 3
2 597 0.118 1 595 1
3 1436 0.033 53 580 357 13 100 20 313
4 720 0.105 718 1 1
5 1664 0.032 1387 73 77 49 7 63 8
6 871 0.101 871
7 1178 0.049 6 5 1167
8 728 0.111 1 727
9 499 0.133 498 1
10 368 0.122 80 33 145 19 15 62 14

1 Criterion (Entropy=0.239)

Fig. 4. The cluster-class distribution of the clustering solutions for the E1 and G1

criterion functions for the sports dataset

consistently leads to better solutions than G1. Figure 4 shows the 10-way clus-
tering solutions produced by E1 and G1 for the sports dataset and illustrates
this difference in the overall clustering quality. As we can see E1 finds clus-
ters that are considerably more balanced than those produced by G1. In fact,
the solution obtained by G1 exhibits similar characteristics (but to a lesser
extent) with the corresponding solution obtained by the I1 criterion function
described in the previous section. G1 tends to produce a mixture of large and
small clusters, with the smaller clusters being reasonably tight and the larger
clusters being quite loose.

In order to compare the E1 and G1 criterion functions it is important to
rewrite them in a way that makes their similarities and dissimilarities appar-
ent. To this end, let µr be the average similarity between the documents of
the rth cluster Sr, and let ξr be the average similarity between the documents
in Sr to the entire set of documents S. Using these definitions, the E1 and G1

functions ((15) and (19)) can be rewritten as

E1 =

k∑
r=1

nr
Dr

tD

‖Dr‖ =

k∑
r=1

nr
nrnξr

nr
√

µr
= n

k∑
r=1

nr
ξr√
µr

, (23)

G1 =

k∑
r=1

Dr
t(D − Dr)

‖Dr‖2
=

(
k∑

r=1

nrnξr

n2
rµr

)
− k =

(
n

k∑
r=1

1

nr

ξr

µr

)
− k. (24)

Note that since k in (24) is constant, it does not affect the overall solution
and we will ignore it.

Comparing (23) and (24) we can see that they differ in the way
they measure the quality of a particular cluster, and on how they combine
these individual cluster quality measures to derive the overall quality of the
clustering solution. In the case of E1, the quality of the rth cluster is mea-
sured as ξr/

√
µr, whereas in the case of G1 it is measured as ξr/µr. Since the

quality of each cluster is inversely related to either µr or
√

µr, both measures
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will prefer solutions in which there are no clusters that are extremely loose.
Because large clusters tend to have small µr values, both the cluster qual-
ity measures will tend to produce solutions that contain reasonably balanced
clusters. Furthermore, the sensitivity of G1’s cluster quality measure on clus-
ters with small µr values is higher than the corresponding sensitivity of E1

(µr ≤ √
µr because µr ≤ 1). Consequently, we would have expected G1 to lead

to more balanced solutions than E1, which as the results in Fig. 4 show does
not happen, suggesting that the second difference between E1 and G1 is the
reason for the unbalanced clusters.

The E1 criterion function sums the individual cluster qualities weighting
them proportionally to the size of each cluster. G1 performs a similar sum-
mation but each cluster quality is weighted proportionally to the inverse of
the size of the cluster. This weighting scheme is similar to that used in the
ratio-cut objective for graph partitioning [109, 212]. Recall from our previous
discussion that since the quality measure of each cluster is inversely related
to µr, the quality measure of large clusters will have large values, as these
clusters will tend to be loose (i.e., µr will be small). Now, in the case of E1,
multiplying the quality measure of a cluster by its size ensures that these large
loose clusters contribute a lot to the overall value of E1’s criterion function. As
a result, E1 will tend to be optimized when there are no large loose clusters.
On the other hand, in the case of G1, dividing the quality measure of a large
loose cluster by its size has the net effect of decreasing the contribution of
this cluster to the overall value of G1’s criterion function. As a result, G1 can
be optimized at a point in which there exist some large and loose clusters.

5.3 Analysis of the G2 Criterion Function

The various experiments presented in Sect. 4 showed that the G2 criterion
function consistently led to clustering solutions that were among the worst
over the solutions produced by the other criterion functions. To illustrate how
G2 fails, Fig. 5 shows the 10-way clustering solution that it produced via direct
k-way clustering on the sports dataset. As we can see, G2 produces solutions
that are highly unbalanced. For example, the sixth cluster contains over 2,500
documents from many different categories, whereas the third cluster contains
only 42 documents that are primarily from a single category. Note that the
clustering solution produced by G2 is very similar to that produced by the I1

criterion function (Fig. 2). In fact, for most of the clusters we can find a good
one-to-one mapping between the two schemes.

The nature of G2’s criterion function makes it extremely hard to analyze
it. However, one reason that can potentially explain the unbalanced clusters
produced by G2 is the fact that it uses a normalized-cut inspired approach to
combine the separation between the clusters (as measured by the cut) versus
the size of the respective clusters. It has been shown in [139] that when the
normalized-cut approach is used in the context of traditional graph partition-
ing, it leads to a solution that is considerably more unbalanced than that
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1 491 0.096 1 5 485
2 1267 0.056 8 5 1244 10
3 42 0.293 2 1 3 1 35
4 630 0.113 0 627 2 1
5 463 0.126 462 1
6 2596 0.027 1407 283 486 184 42 107 87
7 998 0.040 49 486 124 8 79 3 249
8 602 0.120 1 601
9 1202 0.081 1194 2 1 5
10 289 0.198 289

2 Criterion Function (Entropy=0.315)

Fig. 5. The cluster-class distribution of the clustering solutions for the G2 criterion
function for the sports dataset

obtained by the G1 criterion function. However, as our discussion in Sect. 5.2
showed, even G1’s balancing mechanism often leads to quite unbalanced clus-
tering solutions.

5.4 Analysis of the H1 and H2 Criterion Functions

The last set of criterion function that we focus on are the hybrid criterion
functions H1 and H2, which were derived by combining the I1 and E1 and
the I2 and E1 criterion functions, respectively. The 10-way clustering solu-
tions produced by these criterion functions on the sports dataset are shown in
Fig. 6. Looking at the results in this table and comparing them against those
produced by the I1, I2, and E1, criterion functions we can see that H1 and H2

lead to clustering solutions that combine the characteristics of their respective
pairs of individual criterion functions. In particular, the H1 criterion function
leads to a solution that is considerably more balanced than that of I1 and
somewhat more unbalanced than that of E1. Similarly, H2s solution is also
more balanced than I2 and somewhat less balanced than E1.

Overall, from the experiments in Sect. 4 we can see that the quality of
the solutions (as measured by entropy) produced by H1 tends to be between
that of I1 and E1 – but closer to that of E1s; and the solution produced by
H2 tends to be between that of I2 and E1 – but closer to that of I2s. If the
quality is measured in terms of purity, the performance of H1 relative to I1

and E1 remains the same, whereas H2 tends to outperform both I2 and E1.
To understand how these criterion functions, consider the conditions under

which a particular document d will move from its current cluster Si to another
cluster Sj . This document will always be moved (or stay where it is), if each
one of the two criterion functions used to define either H1 or H2 would improve
(or degrade) by performing such a move. The interesting case happens when
according to one criterion function d should be moved and according to the
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1 1220 0.049 60 20 1131 5 2 2
2 724 0.106 722 1 1
3 696 0.111 1 694 1
4 1469 0.070 1468 1
5 562 0.138 560 2
6 576 0.118 574 1 1
7 764 0.108 1 1 762
8 1000 0.045 63 554 370 5 1 7
9 1261 0.023 397 109 130 36 118 145 326
10 308 0.116 289 1 17 1

1 Criterion (Entropy=0.221)

1 1462 0.997 1457 2 3
2 908 0.994 2 2 903 1
3 707 0.960 11 679 17
4 831 0.957 23 4 8 795 1
5 701 0.989 693 1 6 1
6 999 0.978 15 7 977
7 830 0.986 818 11 1
8 526 0.949 17 499 7 1 2
9 997 0.321 128 181 149 5 101 113 320
10 619 0.428 248 35 265 8 20 32 11

2 Criterion Function (Entropy=0.196)
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Fig. 6. The cluster-class distribution of the clustering solutions for the H1 and H2

criterion functions for the sports dataset

other one d should remain where it is. In that case, the overall decision will
depend on how much a particular criterion function improves relative to the
degradation of the other function. In general, if such a move leads to a large
improvement and a small degradation, it is performed. In order to make such
trade-offs possible it is important for the pair of criterion functions involved
to take roughly the same range of values (i.e., be of the same order). If that is
not true, then improvements in one criterion function will not be comparable
to degradations in the other.

In the case of the H1 and H2 criterion functions, our studies showed that
as long as k is sufficiently large, both the I1 and I2 criterion functions are of
the same order than E1. However, in most cases I2 is closer to E1 that I1. This
better match between the I2 and E1 criterion functions may explain why H2

seems to perform better than H1 relative to their respective pairs of criterion
functions, and why H1’s solutions are much closer to those of E1 instead of I1.

5.5 Analysis of Direct k-Way Clustering vs. Repeated Bisections

From our analysis of the I1, I2, and G1 criterion functions we know that based
on the difference between the tightness (i.e., the average pairwise similarity
between the documents in the cluster) of the two clusters, documents that are
naturally part of the tighter cluster will end up being assigned to the looser
cluster. In other words, the various criterion functions will tend to produce
incorrect clustering results when clusters have different degrees of tightness.
Of course, the degree to which a particular criterion function is sensitive to
tightness differences will be different for the various criterion functions. When
the clustering solution is obtained via RB, the difference in tightness between
each pair of clusters in successive bisections will tend to be relatively small.
This is because each cluster to be bisected, will tend to be relatively homo-
geneous (due to the way it was discovered), resulting in a pair of subclusters
with small tightness differences. On the other hand, when the clustering is
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1 245 0.121 243 0 2
2 596 0.067 2 1 593
3 485 0.097 1 480 3 1
4 333 0.080 3 6 3 2 1 318
5 643 0.104 642 1
6 674 0.047 669 2 1 1 1
7 762 0.099 1 760 1
8 826 0.045 42 525 247 6 6
9 833 0.105 832 1
10 795 0.102 1 1 1 791 1
11 579 0.061 6 573
12 647 0.034 174 34 156 10 119 144 10
13 191 0.110 189 2
14 611 0.125 608 3
15 360 0.168 359 1

2—RB (Entropy=0.125)

1 292 0.120 280 11 1
2 471 0.080 1 2 468
3 468 0.100 1 464 2 1
4 363 0.072 3 7 5 1 6 20 321
5 545 0.123 542 1 2
6 1030 0.033 832 36 73 18 4 65 2
7 661 0.110 1 0 660
8 914 0.046 52 514 334 8 1 5
9 822 0.105 822
10 771 0.105 1 1 769
11 641 0.052 2 639
12 447 0.091 89 30 139 11 110 60 8
13 250 0.105 244 5 1
14 545 0.138 540 5
15 360 0.168 2 355 3

2—RB+Renement (Entropy=0.168)
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Fig. 7. The cluster-class distribution of the clustering solutions for the I2 crite-
rion function for the sports dataset, for the repeated-bisections solution, and the
repeated-bisections followed by k-way refinement

computed directly or when the final k-way clustering obtained via a sequence
of RB is refined, there can exist clusters that have significant differences in
tightness. Whenever such pairs of clusters occur, most of the criterion func-
tions will end up moving some of the document of the tighter cluster (which
are weakly connected to the rest of the documents in that cluster) to the
looser cluster. Consequently, the final clustering solution can potentially be
worse than that obtained via RB.

To illustrate this behavior we used the I2 criterion function and computed
a 15-way clustering solution using RB and then refined it by performing a
15-way refinement for the sports dataset. These results are shown in Fig. 7.
The RB solution some clusters that are quite loose and some that are quite
tight. Comparing this solution against the one obtained after performing re-
finement we can see that the size of clusters 6 and 8 (which are among the
looser clusters) increased substantially, whereas the size of some of the tighter
clusters decreased (e.g., clusters 5, 10, and 14).

6 Conclusions

In this chapter we studied seven different global criterion functions for clus-
tering large documents datasets. Four of these functions (I1, I2, G1, and G2)
have been previously proposed for document clustering, whereas the remain-
ing three (E1, H1, and H2) were introduced by us. Our study consisted of a
detailed experimental evaluation using 15 different datasets and three different
approaches to find the desired clusters, followed by a theoretical analysis of
the characteristics of the various criterion functions. Our experiments showed
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that I1 performs poorly whereas I2 leads to reasonably good results that out-
perform the solutions produced by some recently proposed criterion functions
(G1 and G2). Our three new criterion functions performed reasonably well,
with the H2 criterion function achieving the best overall results.

Our analysis showed that the performance difference observed by the var-
ious criterion functions can be attributed to the extent to which the criterion
functions are sensitive to clusters of different degrees of tightness, and the
extent to which they can lead to reasonably balanced solutions. Moreover,
our analysis was able to identify a key property of the I1 criterion function
that can be useful in clustering noisy datasets, in which many documents are
segregated to a separate “garbage” cluster.

The various clustering algorithms and criterion functions described in this
chapter are available in the CLUTO clustering toolkit, which is available on-
line at http://www.cs.umn.edu/~cluto.

Proofs of I1’s and I2’s Optimal Solution Properties

Proof (Proposition 1).

For contradiction, let Aopt = {S1, S2, . . . , Sk} be an optimal solution and
assume that there exists a document d and clusters Si and Sj such that
d ∈ Si and δi − δj < (µi − µj)/2. Consider the clustering solution A′ =
{S1, S2, . . . , {Si − d}, . . . , {Sj + d}, . . . , Sk}. Let Di, Ci, and Dj , Cj be the
composite and centroid vectors of cluster Si − d and Sj , respectively. Then,

I1(Aopt) − I1(A
′) =

‖Di + d‖2

ni + 1
+

‖Dj‖2

nj
− (

‖Di‖2

ni
+

‖Dj + d‖2

nj + 1
)

= (
‖Di + d‖2

ni + 1
− ‖Di‖2

ni
) − (

‖Dj + d‖2

nj + 1
− ‖Dj‖2

nj
)

= (
2nid

tDi + ni − Di
tDi

ni(ni + 1)
) − (

2njd
tDj + nj − Dj

tDj

nj(nj + 1)
)

= (
2niδi

ni + 1
+

1

ni + 1
− niµi

ni + 1
) −

(
2njδj

nj + 1
+

1

nj + 1
− njµj

nj + 1
)

≈ (2δi − 2δj) − (µi − µj),

when ni and nj are sufficiently large. Since δi − δj < (µi − µj)/2, we have
I1(Aopt) − I1(A′) < 0, a contradiction.

Proof (Proposition 2).

For contradiction, let Aopt = {S1, S2, . . . , Sk} be an optimal solution and
assume that there exists a document d and clusters Si and Sj such that d ∈ Si

and δi/δj <
√

µi/µj . Consider the clustering solution A′ = {S1, S2, . . . , {Si −
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d}, . . . , {Sj+d}, . . . , Sk}. Let Di, Ci and Dj , Cj be the composite and centroid
vectors of cluster Si − d and Sj , respectively. Then,

I2(Aopt) − I2(A
′) = ‖Di + d‖ + ‖Dj‖ − (‖Di‖ + ‖Dj + d‖)

= (
√

Di
tDi + 1 + 2dtDi −

√
Di

tDi) −
(
√

Dj
tDj + 1 + 2dtDj −

√
Dj

tDj). (25)

Now, if ni and nj are sufficiently large we have that Di
tDi + 2dtDi � 1, and

thus
Di

tDi + 1 + 2dtDi ≈ Di
tDi + 2dtDi. (26)

Furthermore, we have that(√
Di

tDi +
dtDi√
Di

tDi

)2

= Di
tDi +

(dtDi)
2

Di
tDi

+ 2dtDi ≈ Di
tDi + 2dtDi, (27)

as long as δ2
i /µi = o(1). This condition is fairly mild as it essentially requires

that µi is sufficiently large relative to δ2
i , which is always true for sets of

documents that form clusters. Now, using (26) and (27) for both clusters,
(25) can be rewritten as

I2(Aopt) − I2(A
′) =

dtDi√
Di

tDi

− dtDj√
Dj

tDj

=
δi√
µi

− δj√
µj

.

Since δi/δj <
√

µi/µj , we have I2(Aopt) − I2(A′) < 0, a contradiction.
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Fowlkes and Mallows, 173
Jaccard, 49
Jain and Dubes, 173
Rand, 173
Silhouette, 66

complete link, 31
compressed sparse column format

(CSC), 196
compressed sparse row (CSR), 189
Constraint-Based Clustering, 52
cosine similarity, 2, 3
cranfield, 189, 200, 206
criteria

External, 169, 172
Internal, 169, 170

Cross-Entropy method, 161–163, 173
CURE, 32, 33, 58, 70
curse of dimensionality, 162, 165

DBCLASD, 45
DBCSAN, 70
DBSCAN, 43, 44
DENCLUE, 45, 46, 61
departure from normality, 165
DIGNET, 56
dimensionality curse, 59
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dirty text, 193
dissimilarity measure, 163
distance

Bregman, 133, 142
Bregman with reversed order of

variables, 149, 152
entropy–like, 131
Hellinger, 133

divergence
Bregman, 127, 133
Csiszar, 127, 150, 152
KL, 132, 149
Kullback–Leibler, 131, 132
ϕ, 131

divisive clustering, 30
Doc2mat, 189
dominating set, 8

E1 criterion function, 218
eigenvalue decomposition, 187
ENCLUS, 61
entropy, 167, 223

Burg, 135
relative, 131

external criterion functions, 217

Forgy’s algorithm, 40
Fractal Clustering algorithm, 48
function

closed, proper, convex, 133
cofinite, 135
convex conjugate, 134
convex of Legendre type, 134
distance-like, 129, 132
essentially smooth, 139
objective, 127

G1 criterion function, 220
G2 criterion function, 221
Gaussian Mixture Model (GMM), 164
General Text Parser (gtp), 189
Gibb’s second theorem, 168
Google, 1
graph based criterion functions, 220
gtp, 189, 192, 196, 200, 206, 209

H1 criterion function, 219
H2 criterion function, 219
Harwell–Boeing, 196

Hierarchical clustering, 29
HMETIS, 33, 51
Hungarian method, 171, 172, 176
hybrid criterion functions, 219

I1 criterion function, 216
I3 criterion function, 217
I2 criterion function, 216
ICOMP criterion, 67
implicitly restarted Arnoldi, 197
incremental refinement, 222
index

Calinski and Harabasz, 170
Entropy Based, 167
Friedman’s Pursuit, 166, 167
Gap, 171
Hartigan, 170
Hermite’s Pursuit, 167
Jaccard, 69
Krzanowski and Lai, 170
projection pursuit, 165
Rand, 65, 69
Sugar and James, 170

Information Bottleneck method, 63
Inquery, 1
internal criterion functions, 216
inverted index, 195
ISODATA, 41
Iterative Averaging Initialization, 176

k-means, 39–41, 127, 130, 146, 162, 163
batch, 137, 145
incremental, 144, 145

k-median, 130, 162
k-medoid, 37
KD-trees, 68

Lance–Williams updating formula, 31
Lemur Tolkit, 189
linkage metrics, 30
LKMA, 54
LMFR

algorithm, 104
applications, 107
complexity, 107
construction, 103
graphical representation, 105
parameters, 106
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Low-Memory Factored Representation,
see LMFR

MAFIA, 46, 61
MATLAB, 188
matrix approximation, see LMFR
Matrix Market, 189
mc, 189
MCLUST, 38
MDL criterion, 67
mean, 139

arithmetic, 138
entropic, 137, 140
generalized of Hardy, Littlewood, and

Polya, 141
geometric, 152
Gini, 140
Lehmer, 140
of order p, 140
unusual, 142
weighted arithmetic, 142

medline, 189, 200, 206, 207
Minimum Spanning Tree algorithm, 32
MML criterion, 67

negentropy, 168
noncentral chi-square distribution, 181

OPTICS, 44
OPTIGRID, 61
ORCLUS, 62

PAM, 39
partition, 129

first variation of, 146
optimal, 129
quality of, 129, 163

Partition coefficient, 66
partitional clustering, 215
PDDP, 208, 209

complexity, 107
PDDP algorithm, 34
Piecemeal PDDP, see PMPDDP
Ping-Pong algorithm, 63
PMPDDP

algorithm, 111
applying in practice, 123
complexity, 113
estimating scatter, 112

experimental results, 118
method, 110
parameters, 113

PMPDDP clustering method, 110
precision, 206, 207
Principal Component Analysis, 165
Principal Direction Divisive Partition-

ing, see PDDP
Principal Direction Divisive Partitioning

(pddp), 189
Probabilistic clustering, 38
PROCLUS, 62
Projection Pursuit, 164, 165

querying, 187, 188

R-trees, 68
R∗-trees, 68
recall, 206
repeated bisections, 225
reuters-21578, 189, 197
ROCK, 33, 49, 50

Scatter/Gather, 2
sddpack, 189
set cover, 8
simplex, 138
single link, 18, 31
singular value decomposition (SVD),

187
SINICC, 55
Skmeans, 208, 209
Smart, 1, 3, 21
SNOB, 38
SOM, 54
sparse matrix, 188, 194
Spherical k-means (Skmeans), 208
star cover, 8
stemming, 189
STING, 47
STING+, 47
STIRR, 51
SVD, 34, 197, 198, 206

Telcordia LSI Engine, 189
term-document matrix (tdm), 188
text mining, 187
Text to Matrix Generator (tmg), 187
three point identity, 137
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tmg, 188–202, 204–206, 208, 209
total dispersion matrix, 164
total scatter matrix, 164
TREC, 3

vector space model (VSM), 2, 3, 187

Ward’s method, 34
WaveCluster, 48, 70
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